Out Through An Earhole

482 views

Published on

beautiful piece by Fred Thomas from his trio album - thoroughly recommended, some lovely subtle cross-metres, and beautiful harmony...

Published in: Spiritual, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
482
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Out Through An Earhole

  1. 1. Out Through An Earhole Fred Thomas                                                          5                                                       9                                                         13                                               17                                               20    4  4                                     22                                                  
  2. 2. 2 26                                            29                                                   32                                          35                                                        3   38        3                             3         41        4     4 4                                   44   4                                    4      
  3. 3. 3         4 47                           49   4         3                  3 3                       51 3       3 3 3               53                                                       55                                              58                                                    61                                            

×