Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Building damage response to tunnel excavation

806 views

Published on

Published in: Technology, Business
  • Be the first to comment

Building damage response to tunnel excavation

  1. 1. ก ก ก F 15 12-14 2553 ก ก ก ก F F PREDICTION OF RC BUILDING DAMAGE CATEGORIES RESPONSE TO TUNNEL EXCAVATION INDUCED GROUND MOVEMENT F (Suchatvee Suwansawat)1 (Chinawut Chanchaya)2 1 F F ก ก กF F F F ก ก F กF F ก ( kssuchat@kmitl.ac.th) 2 ก .ก F ก ( ) (topcu_999@yahoo.com) F : F ก กก ก F F F ก ก F Stiffness F F F F Fก F ก F ก 1-5 F F F ก F F , F ก F F ก Normalised Stiffness Ratio (NSR) Fก F F F ʽ ก ก Sagging Hogging F ก(Gaussian Curve) F F Bending Stiffness ( EI* ) Shear Stiffness ( GA* ) F ก F ก F F F F กF F ก F ก F ก F F F F ก ก F ก กก ก F FABSTRACT : Building damage due to tunnel excavation-induced ground movement is general evaluated using deep elastic beammethod with various related stiffness and dimension length/height with unit thickness of building. Damage criterion based onlimit/critical tensile strain corresponding to building damage category 1-5 as commonly calculated the deflection ratio, horizontaltensile strain of adjacent buildings in influence zone of tunnel excavation for risk assessment. This paper employed the approach of Normalised Stiffness Ratio (NSR) related to the percentage of openings for the different of Reinforced Concrete (RC) buildingswithin sagging and hogging zone of Gaussian Curve to evaluate the proper equivalent bending stiffness ( EI* ) and shear stiffness( GA* ) by analytical calculations, which presented the chart of generalized RC building damage categories response to tunnelexcavation accurately between deflection ratio and horizontal tensile strain compared to critical strain for different L/H building.KEYWORDS : Tunnel Excavation, Building Damage, Reinforced Concrete, Deflection Ratio, Normalised Stiffness Ratio
  2. 2. ก ก ก F 15 12-14 25531. ก F F F ก F ˆ กF F F F F ก (1) (2)ก ˈ ก ก d ∆ M P ( L 2) 2 = + (1) dx 2 EI kGA F F F F F ก ∆ PL2 =  18EI  (2) 1 + L2GA  ก ก ก F กF F F F L 48 EI   ∆ = F กF (Relative deflection) Fก ก F ก Fก M = F (Bending Moment) F F ก F F P = ก ˈ (Point Load) F F ก F ก L = F F ก EI = F F ก F F F GA = F กF F F Fก k = . . . (Shear Coefficient) = 2/3 F2. กก F F F กF F กก F ก F 2 F ก Bending Moment ก F Stiffness Shearing F ก F F F กF Fก F F 2 F 1 1 3 ก ก (3) (4) 1 F I, Cb Cs ก 1 ก กก F [1] 3ก FF I ก F ก [3] ∆ = Cbε b ,max (3) 2 ก FF F ก Point Load L ∆ = Cs ε d ,max (4) L ˈ ก (Deep beam) ก ก F ∆ = F กF F L ก ก ˈ (Point Load) 2 ก ε b,max = F ก Bending F F F x ε d ,max = F ก
  3. 3. ก ก ก F 15 12-14 2553 ก ก F ε b,max ε d ,max F F F δL กก F F Stiffness Ratio Neutral F F 2 ก (5) axis F F Deflection Ratio ก F ε br ε dr ก (6) (7) F F F ก ก ˈδL = ∆δ L (5) Frame Structure (E/G=12.5) ก F Deflection Ratio กก F Lε br = ε b ,max + δ L (6) ก (Limit Tensile Strain) ก  1 −ν  2  1 +ν  2 (7) ก ก กε dr = δ L   + δL   + ε d ,max 2  2   2  ˈ F L F F ก 3.125 δL = F H 4(a) ก ก ε br = F ก Bending L F F ก 3.125 F ก ε dr = F ก H ∆δ L = F กF 5 F กF F F F EI * GA* F ν = F ˆ F ก ก (3) (7) F F F ∆ L ก ε limit F (L) ก F E H G F Neutral axis Sagging Hogging 4 5ก F 3. ก F Equivalent Stiffness กกF F F F ʽ F F F F ก F F F ʽ (a) Neutral axis F กก Sagging 6 Fก F F Stiffness (b) Neutral axis F F Hogging 4 F E/G Neutral axis F F Deflection Ratio [5]
  4. 4. ก ก ก F 15 12-14 2553 กF F EI * GA* กก ก F Deflection Ratio ก F (Tensile Strain) ก ก ก F ก ˈ F F L   F ก 3.125 ก ˈ 2 ก  H critical F F NSR ก L 7 H • ก 1  L < L       H   H critical (L H ) L (11) A∗ = x (L H ) critical m  L ∑  t.H − (i A )    i =1   o i  (L H )  ( )  + t. ( L.h − ( A ) ) .λ  (12) 3  n  1  L.h j − ( Ao ) j  j o ∗ x ∑  xt.  j I =  2 j  (L H ) critical j =1 12    L   L   • ก 2  L > L       H   H critical L (13) A∗ =   6 F ʽ 0%, 10%, 20% 30% [7] m L ∑  t.H − (i A )   i =1   3.1 F NSR F F I* A* o i  ( ) ( L.h − ( A ) ) .λ  (14) 3  n  1  L.h j − ( Ao ) j  F กF ก ก j o I = ∑  xt.  ∗ j  + t. 2 j  j =1 12  L  L      (2) F F F Stiffness ก A* = F F F F ʽ ก (8) ก F ʽ I* = F F F ก (9) ก F Stiffness ก L = ก (10) F EI * GA* Li = F F F F 1 (8)K = plain beam L3 3L hj = F F F F + 48EI 8GA ( Ao )i = F ʽ F F 1 (9)K equivalent = L3 3L ( Ao ) j = F ʽ F F + 48 EI * 8GA* λj = ก Neutral axis FNSR = K equivalent (10) K plain beam F F ก NSR = F Normalised Stiffness Ratio t = K plain beam = F Stiffness ( ) F F NSR F Sagging K equivalent = F Stiffness ( F ʽ ) Hogging 7 F ก 1 F กF F A, I EI = F Bending Stiffness กก F NSR F GA = F Shear Stiffness ก 2 F F กF F A, I ก F NSR EI * = F Bending Stiffness F F ก ก F NSR F F GA* = F Shear Stiffness F F F F ʽ กก L =
  5. 5. ก ก ก F 15 12-14 2553 ก F Deflection Ratio กก ก F F Bending Strain ( ε br ) Diagonal Strain ( ε dr ) F ก F F (a) F NSR F Sagging (a) F F Sagging (b) F NSR F Hogging 7 F F F Nomalised Stiffness Ratio (NSR) ก F F (L/H) F F F ʽ 0%, 10%, 20%, 30% (b) F F Hogging3.2 F ก F ʽ ∆ δL 8 F F L ก (ก E =12.5) ก ก F ʽ ε limit ε lim it G ก F Deflection Ratio F F F ʽ (No openings) F ก F ก ก ก ( F F ʽ ) ก ก (3) (7) F F Cb Cs ก F ʽ ก ก (15) (16)Cb = L + 3I *  E    (15) 12λ 2λ LA*  G Cs = 1 + L2 A*  G    (16) 18I *  E  F ก F Neutral axis ก ก F ก ก F ก F F ʽ F (a) F F SaggingDeflection Ratio ก ε limit ก ก (3) (7)
  6. 6. ก ก ก F 15 12-14 2553 2 ก F ก [2] ก กก ก F ก F F Deflection Ratio ก F ʽ ก F F ʽ F ก (b) F F Hogging F F 10 กก F กF 9 F F ∆ L ก δL (ก E =12.5) F [4,6] ก ε limit ε lim it Fก ก G F ʽ (With opening) 30% F ก กก F ก กก F Equivalent Stiffness F F ˈ Theory of Elasticity F EI * GA* NormalisedStiffness Ratio, (NSR) L F H ∆ δL F F ε limit L ก ε lim it ก ก ( E =12.5) ก F F ʽ (Plain beam) G 8 ก F ʽ (Beam with openings) 30% δL 9 F ε ก F ก Diagonal lim itstrain ( F ˈ F F) กF F ˈBending strain ( F ˈ F ) ก ก F εδL L F %Opening F lim it H F F Deflection Ratio ก ก ก ก F Deflection Ratio F ก ก F ก ก F ก (Limit Tensile Strain, ε limit ) 2 F ˈ ก F F ก กก 10 ก ก กF F F F
  7. 7. ก ก ก F 15 12-14 25534. ก ก( F F ʽ ) F ʽ ก FDeflection Ratio ( ∆ ) ก F (δ ) L L ก F ก ( ε limit ) ก กก ก F ก F Normalised Stiffness Ratio (NSR) FBending Stiffness ( EI * ) Shear Stiffness ( GA* ) Fก F F F ʽ F F FDeflection Ratio ก ก ก F Deflection Ratio ก ก F5. ก[1] F , ก 2552. ก ก F, ก ก ก F 14,[2] Boscardin M.D. and Cording E.J., 1989. Building response to excavation-induced settlement, Journal of Geotechnical Engineering, ASCE Vol. 115 (1), 1-21.[3] Burland J.B. and Wroth, C.P., 1974. Settlement behavior of buildings and associated damage, Proc., Conf. on Settlement of Structures, Pentech Press, London, 611-654.[4] Debra F.L., Seyit C., James H.L. and Cording E.J., 2009. Predicting RC frame response to excavation-induced settlement, Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol.135 (11), 1605-1619.[5] Finno R..J., Voss F.T., Rossow E. and Blackburn J.T., 2005. Evaluating Damage Potential Buildings Affected by Excavations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol. 131 (10), 1199-1210.[6] Schuster M., Kung G.T.C., Juang C.H. and Hashash Y.M.A., 2009. Simplified model for evaluating damage potential of buildings adjacent to a braced excavation, Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol.135 (12), 1823-1835.[7] Son M. and Cording E.J., 2005. Evaluation of building stiffness for building response analysis to excavation-induced ground movements, Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol.133 (8), 995-1002.

×