Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

ゲームグラフィックス特論 第12回

1,436 views

Published on

環境遮蔽,間接光,相互反射

Published in: Education, Business, Technology
  • Be the first to comment

ゲームグラフィックス特論 第12回

  1. 1. m (
  2. 2. 3WLSOX AMMV S X • • ö é • s x • • • y x t • • y z np z o • y
  3. 3. y
  4. 4. )- ( y
  5. 5. • s x • y z • t x x v ys E p,n( ) = LA cosθi dωi = π LAΩ ∫ E p,n( ) = LA v p,l( )cosθi dωiΩ ∫ v p,l( ) = 0 1{ kA p( ) = 1 π v p,l( )cosθi dωiΩ ∫ E p,n( ) = kA p( )π LA ! x " y v t 0i v t 1 n o
  6. 6. "% &' "% "( &' "( t t t LOX X WKV p0 p1 p2 p0 p1 p2 "( ") t yi "( y &' t
  7. 7. • • 4C68 t • LOX X WKV Lo v( ) = cdiff π ⊗ kAπ LA + v lk( )ELk cosθik k=1 n ∑ # $ % & ' ( Lo v( ) = kA camb π π LA + v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑ nbent = v l()lcosθi dωiΩ ∫ v l()lcosθi dωiΩ ∫ u
  8. 8. ö • *+,-kö i&+,-kö • LOX X WKV ./0,1 • 2′+&kLOX X WKV ./0,1 !& Lo v( ) = kA camb π ⊗ Eind + kind ELk k=1 n ∑ # $ % & ' (+ v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑ Lo v( ) = kA camb π ⊗ Eind + kind ELk cos "θik k=1 n ∑ $ % & ' ( )+ v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑
  9. 9. GS SLSVS c AL M KXMO • t • s x t • AL M KXMO • 4 ! kA = 1 π ρ l()cosθi dωiΩ ∫ ld dmax r(l) = dmax d
  10. 10. • t • ys • y t !kA = kA 1− camb 1− kA( ) x 56 57 y t Li Lo
  11. 11. • m • &' LOX X WKV .89:; • m i • &' LOX X WKV .89:; i t y • ö • m ö
  12. 12. ö • • 4 XXOVV" SMRKOV 6cXKWSM KWLSOX MMV S X KXN SXNS OM VS R SX ( ( ( 0 (() ()) • y BS K O P RO 5K SLLOKX
  13. 13. 4 XXOV • C y 7 x 0 02 • 7 x &' R E θ θ 1− rcosθE max 1,4cosθR( ) 4 π +r2
  14. 14. m ö • ö • y m • m ö • m t • v n z i o u • 5 c OU y 5 c S t • u
  15. 15. 5 c OU • l • n o u • x U3 • é y U3 1 • P
  16. 16. 5 c OU
  17. 17. 5 c OU s
  18. 18. G V WO SM AL M KXMO
  19. 19. P • m x • P " ER WK " 5K OX 5 VNS d" KXN AVS O 6O OX G V ( @ ) 35 " ( , D 99C3B: ( , • • • t x x x x x z z z z y
  20. 20. P n o
  21. 21. P
  22. 22. ww
  23. 23. • u • • y n p
  24. 24. • i
  25. 25. • • .0 i"0 s n o • < =, ? 0 = ? • @ " 0 " • B C, D, E 0 C, D, E m • F = < ., 0, 1, 0 @ −" , I = FJ(B 1, −1, 1 F • . = 0, 1, 0 ⇓ I = @ " B 1, −1, 1 @ −"
  26. 26. F = < ., 0,1,0 @ −" ,I = FJ( B 1,−1,1 F O p n O (0,1,0) p n O O O O @ −" < ., 0, 1, 0 B 1, −1, 1 < 0, 1, 0 , . @ "
  27. 27. ,( sin 2( = ,) sin 2) • O = 4P + R − & . 4 = ,( ,)⁄ R = − P T . & = 1 + R − 4 R + 4 • O = −V. + P V ≈ 1.0 i t n θ1 θ2 ,( ,)
  28. 28. v t t
  29. 29. ö
  30. 30. • r • y t • y t t • i t u • • x • y x t y • x u t
  31. 31. x x x s
  32. 32. • r t • n m o • n o
  33. 33. m • E XO HRS ON" " 5 WW XSMK S X P RO 35 " () X ," Z ) ) ) /" XO • • x x • i i v • i m mi m iö i v t
  34. 34. m
  35. 35. m • x • s v • y • • x • n m o • öyn o t •
  36. 36. m
  37. 37. 6S SL ON Kc KMSX Cook, Robert L., Thomas Porter, and Loren Carpenter. "Distributed ray tracing.” ACM SIGGRAPH Computer Graphics. Vol. 18. No. 3. ACM, 1984.
  38. 38. • ö z u • é i é • ö z u é • z • n o v t • 5 ROX" SMRKOV 8" KXN 6 XKVN B 9 OOXLO ERO ROWS M LO0 3 KNS S c V S X P M WZVOb OX S XWOX 35 D 99C3B: 5 WZ O 9 KZRSM G V / @ ) 35 " /. • 5 ROX" SMRKOV 8" O KV 3 Z O S O OPSXOWOX KZZ KMR PK KNS S c SWK O OXO K S X 35 D 99C3B: M WZ O KZRSM (( /.. 0 - .
  39. 39. é
  40. 40. m
  41. 41. • m • m y • y • • é m • x v • m
  42. 42. m n o
  43. 43. • m n o • • =KTScK" KWO E ERO OXNO SX O K S X G V ( @ 35 " /., • x q q • x v u • m • w ö t • m é t • ö s
  44. 44. m
  45. 45. • • x m • • x m • • OX OX" :OX SU HKXX COKVS SM SWK O cX RO S SX ZR X WKZZSX 3= BO O " N " ( • m • y y x
  46. 46. 13
  47. 47. B OM WZ ON CKNSKXMO E KX PO • • DV KX" BO O BSUO" KX =K d" KXN RX DXcNO B OM WZ ON KNSKXMO KX PO P OKV SWO OXNO SX SX NcXKWSM" V a P O OXMc VS R SX OX S XWOX G V ( @ ) 35 " ( ( • • x z • • • 6S OM I/ M • s wt • z t • z t
  48. 48. 6S OM I BCE BCE
  49. 49. 6S OM I BCE y y
  50. 50. BCE = S OX OX" 3XNO HKX " E WK 3UOXSXO hVVO " KXN :OX SU HKXX OX OX B OM WZ ON V MKV KNSKXMO KX PO P OKV SWO VS R SX NO S X G V ( @ ) 35 " (
  51. 51. BCE DV KX" BO O BSUO" 4OX XK" KXN RX DXcNO MKV" NOP WKLVO Z OM WZ ON KNSKXMO KX PO G V ( @ ) 35 " (
  52. 52. @ " COX" CK S CKWKW RS" KXN BK :KX KRKX 3VV P O OXMc RKN a SX X X VSXOK aK OVO VS R SX KZZ bSWK S X G V (( @ ) 35 " ( )
  53. 53. X KX CKNS S c GB u x y GS KV B SX S R " GB 光源の配置 光源から光を放射して 各点の陰影付け 各点を点光源にして 陰影計算
  54. 54. X KX CKNS S c • =OVVO " 3VObKXNO X KX KNS S c 35 B O 3NNS X HO VOc B LVS RSX 5 " //- • KSXO" DKW VS" O KV XM OWOX KV SX KX KNS S c P OKV SWO SXNS OM SVV WSXK S X 7 KZRSM 3 MSK S X" ( - • DO SK" 4OXTKWSX" OKX 5VK NO ORV" KXN 4O XK N Bg MRO O Z VS SX KX KNS S c G V (, @ ) 4VKMUaOVV B LVS RSX N" ( -
  55. 55. • t • n o t j • R Z 0 S R L M W U SU KWZVO ( • WS O SWZVO O j • i v u WKSX MZZ WS O tj • . = (0, 1, 0) • s " = (0, 0, 0) • WS O ys j • WKSX MZZ WS O m tj • U S2 c aKUKcKWK KM TZ

×