Successfully reported this slideshow.
Upcoming SlideShare
×

# ゲームグラフィックス特論 第１２回

1,436 views

Published on

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### ゲームグラフィックス特論 第１２回

1. 1. m (
2. 2. 3WLSOX AMMV S X • • ö é • s x • • • y x t • • y z np z o • y
3. 3. y
4. 4. )- ( y
5. 5. • s x • y z • t x x v ys E p,n( ) = LA cosθi dωi = π LAΩ ∫ E p,n( ) = LA v p,l( )cosθi dωiΩ ∫ v p,l( ) = 0 1{ kA p( ) = 1 π v p,l( )cosθi dωiΩ ∫ E p,n( ) = kA p( )π LA ! x " y v t 0i v t 1 n o
6. 6. "% &' "% "( &' "( t t t LOX X WKV p0 p1 p2 p0 p1 p2 "( ") t yi "( y &' t
7. 7. • • 4C68 t • LOX X WKV Lo v( ) = cdiff π ⊗ kAπ LA + v lk( )ELk cosθik k=1 n ∑ # \$ % & ' ( Lo v( ) = kA camb π π LA + v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑ nbent = v l()lcosθi dωiΩ ∫ v l()lcosθi dωiΩ ∫ u
8. 8. ö • *+,-kö i&+,-kö • LOX X WKV ./0,1 • 2′+&kLOX X WKV ./0,1 !& Lo v( ) = kA camb π ⊗ Eind + kind ELk k=1 n ∑ # \$ % & ' (+ v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑ Lo v( ) = kA camb π ⊗ Eind + kind ELk cos "θik k=1 n ∑ \$ % & ' ( )+ v lk( ) f lk,v( )⊗ ELk cosθik k=1 n ∑
9. 9. GS SLSVS c AL M KXMO • t • s x t • AL M KXMO • 4 ! kA = 1 π ρ l()cosθi dωiΩ ∫ ld dmax r(l) = dmax d
10. 10. • t • ys • y t !kA = kA 1− camb 1− kA( ) x 56 57 y t Li Lo
11. 11. • m • &' LOX X WKV .89:; • m i • &' LOX X WKV .89:; i t y • ö • m ö
12. 12. ö • • 4 XXOVV" SMRKOV 6cXKWSM KWLSOX MMV S X KXN SXNS OM VS R SX ( ( ( 0 (() ()) • y BS K O P RO 5K SLLOKX
13. 13. 4 XXOV • C y 7 x 0 02 • 7 x &' R E θ θ 1− rcosθE max 1,4cosθR( ) 4 π +r2
14. 14. m ö • ö • y m • m ö • m t • v n z i o u • 5 c OU y 5 c S t • u
15. 15. 5 c OU • l • n o u • x U3 • é y U3 1 • P
16. 16. 5 c OU
17. 17. 5 c OU s
18. 18. G V WO SM AL M KXMO
19. 19. P • m x • P " ER WK " 5K OX 5 VNS d" KXN AVS O 6O OX G V ( @ ) 35 " ( , D 99C3B: ( , • • • t x x x x x z z z z y
20. 20. P n o
21. 21. P
22. 22. ww
23. 23. • u • • y n p
24. 24. • i
25. 25. • • .0 i"0 s n o • < =, ? 0 = ? • @ " 0 " • B C, D, E 0 C, D, E m • F = < ., 0, 1, 0 @ −" , I = FJ(B 1, −1, 1 F • . = 0, 1, 0 ⇓ I = @ " B 1, −1, 1 @ −"
26. 26. F = < ., 0,1,0 @ −" ,I = FJ( B 1,−1,1 F O p n O (0,1,0) p n O O O O @ −" < ., 0, 1, 0 B 1, −1, 1 < 0, 1, 0 , . @ "
27. 27. ,( sin 2( = ,) sin 2) • O = 4P + R − & . 4 = ,( ,)⁄ R = − P T . & = 1 + R − 4 R + 4 • O = −V. + P V ≈ 1.0 i t n θ1 θ2 ,( ,)
28. 28. v t t
29. 29. ö
30. 30. • r • y t • y t t • i t u • • x • y x t y • x u t
31. 31. x x x s
32. 32. • r t • n m o • n o
33. 33. m • E XO HRS ON" " 5 WW XSMK S X P RO 35 " () X ," Z ) ) ) /" XO • • x x • i i v • i m mi m iö i v t
34. 34. m
35. 35. m • x • s v • y • • x • n m o • öyn o t •
36. 36. m
37. 37. 6S SL ON Kc KMSX Cook, Robert L., Thomas Porter, and Loren Carpenter. "Distributed ray tracing.” ACM SIGGRAPH Computer Graphics. Vol. 18. No. 3. ACM, 1984.
38. 38. • ö z u • é i é • ö z u é • z • n o v t • 5 ROX" SMRKOV 8" KXN 6 XKVN B 9 OOXLO ERO ROWS M LO0 3 KNS S c V S X P M WZVOb OX S XWOX 35 D 99C3B: 5 WZ O 9 KZRSM G V / @ ) 35 " /. • 5 ROX" SMRKOV 8" O KV 3 Z O S O OPSXOWOX KZZ KMR PK KNS S c SWK O OXO K S X 35 D 99C3B: M WZ O KZRSM (( /.. 0 - .
39. 39. é
40. 40. m
41. 41. • m • m y • y • • é m • x v • m
42. 42. m n o
43. 43. • m n o • • =KTScK" KWO E ERO OXNO SX O K S X G V ( @ 35 " /., • x q q • x v u • m • w ö t • m é t • ö s
44. 44. m
45. 45. • • x m • • x m • • OX OX" :OX SU HKXX COKVS SM SWK O cX RO S SX ZR X WKZZSX 3= BO O " N " ( • m • y y x
46. 46. 13
47. 47. B OM WZ ON CKNSKXMO E KX PO • • DV KX" BO O BSUO" KX =K d" KXN RX DXcNO B OM WZ ON KNSKXMO KX PO P OKV SWO OXNO SX SX NcXKWSM" V a P O OXMc VS R SX OX S XWOX G V ( @ ) 35 " ( ( • • x z • • • 6S OM I/ M • s wt • z t • z t
48. 48. 6S OM I BCE BCE
49. 49. 6S OM I BCE y y
50. 50. BCE = S OX OX" 3XNO HKX " E WK 3UOXSXO hVVO " KXN :OX SU HKXX OX OX B OM WZ ON V MKV KNSKXMO KX PO P OKV SWO VS R SX NO S X G V ( @ ) 35 " (
51. 51. BCE DV KX" BO O BSUO" 4OX XK" KXN RX DXcNO MKV" NOP WKLVO Z OM WZ ON KNSKXMO KX PO G V ( @ ) 35 " (
52. 52. @ " COX" CK S CKWKW RS" KXN BK :KX KRKX 3VV P O OXMc RKN a SX X X VSXOK aK OVO VS R SX KZZ bSWK S X G V (( @ ) 35 " ( )
53. 53. X KX CKNS S c GB u x y GS KV B SX S R " GB 光源の配置 光源から光を放射して 各点の陰影付け 各点を点光源にして 陰影計算
54. 54. X KX CKNS S c • =OVVO " 3VObKXNO X KX KNS S c 35 B O 3NNS X HO VOc B LVS RSX 5 " //- • KSXO" DKW VS" O KV XM OWOX KV SX KX KNS S c P OKV SWO SXNS OM SVV WSXK S X 7 KZRSM 3 MSK S X" ( - • DO SK" 4OXTKWSX" OKX 5VK NO ORV" KXN 4O XK N Bg MRO O Z VS SX KX KNS S c G V (, @ ) 4VKMUaOVV B LVS RSX N" ( -
55. 55. • t • n o t j • R Z 0 S R L M W U SU KWZVO ( • WS O SWZVO O j • i v u WKSX MZZ WS O tj • . = (0, 1, 0) • s " = (0, 0, 0) • WS O ys j • WKSX MZZ WS O m tj • U S2 c aKUKcKWK KM TZ