Dynamics of Satellite With a Tether System

Theoretical mechanics department
Theoretical mechanics departmentAssociate Professor at Samara State Aerospace University
Vladimir S. Aslanov
          aslanov_vs@mail.ru



Dynamics of satellite with
   a Tether System

  Theoretical Mechanics Department
            www.termech.ru

  Samara State Aerospace University,
               Russia
             www.ssau.ru



                 2012
Statement of the problem

   The motion about a centre of mass of a spacecraft (satellite) with a
   elastic heavy tethered system at a orbit is studied.

  Tethered satellite systems (TTS)
  includes:
          - rigid satellite (spacecraft),
          - elastic heavy tether,
          - end load.




The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The
research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this
area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of
the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and
others.
                                                                                                                                  2
Example of the Tethered Satellite Systems

               Scheme of the dynamic deployment of TSS
                    «Foton-М3" №3 – YES2" (2008)


Initial Foton-M3 parameters are assumed
as follows:
Mass                         6530 kg
Ballistic coefficient       0.0123 m2/kg.
Inclination                 63 degrees
Minimum orbital altitude       262 km
Maximum orbital altitude        304 km

Tether parameters are assumed as
follows:
Diameter                   0.5 mm
Length                     30000 m
Mass density               0.00018 kg/m
Initial Speed of
 tether deployment         2.58 m/c
Mass End Load              12 kg
                                                         3
Aims of the research


1. To obtain mathematical models of the plane motion of the satellite of
   about of mass center under the influence of elastic the tether system.
2. To deduce approximate analytical solutions describing
   the oscillations of the satellite caused by the change magnitude and
   direction of the tether force.
3. To build models chaotic behavior of the satellite and to study of the
   satellite motion under the influence the elastic tether of the chaotic
   dynamics methods.
4. To find the approximate estimates of the accelerations in the
   satellite arising from the deployment of the tether.



                                                                            4
The Lagrange equations
   Kinetic energy of the TSS

      1             1 2        1
   T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2 
          2  2 2
                                                                               (1)
      2             2 i0      2


where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates


 Potential energy
            2
              mi 3               m1l 2          c
 W      3  A  B  cos  
                            2
                                         cos 2   (l  l0 )2                   (2)
         i 0 ri 2r0              8r13            2

 Lagrange equations of the second kind

                              d L L
                                           Qj                                               D0 P, l  PD2
                              dt q j q j
                                  

where L    T W       - Lagrange function,        Qj   - nonpotential forces
                                                                                                                5
The motion equations

                The approximate motion equations of the TTS

                                We assume          / l  1, l / r  1


C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q
                                                              l                           (3)


ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q
                                                                                           (4)


                 
                l                        Q
 sin(   )       f3 (l, , , , )  l
                                                m
                                                                                                 (5)


 mr   2
            C0  I   C0  I  f3 (l, , r , , )  Q
                                                                                         (6)

             3 I                      9
                    4 
r      
  r 2  2         1  3cos 2        4 
                                                A  B  cos 2   Qr                             (7)
           r    2mr                     2mr


where         m  m0 m2 / m, I  ml 2
                                                                                                       6
The motion equations on a elliptic orbit

  Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the
  centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the
  generalized coordinates and are known through

                                                   p      p
                                        r                                    
                                                                                nk 2       n   p 3
                                              1  e cos k
                                                                                               d
Substitution variable from t to the true anomaly angle θ:                         dt 
                                                                                         n 1  e cos 
                                                                                                           2




                                                          The motion equations
                                                                                                                                  Q
     C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)             (8)
                                                                                                                                 n2 k 3
                                                                                              Q
     ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)                                                 (9)
                                                                                             n2 k 3

                                                                     Ql
      sin(   )k   kl   f3* ( , , , ', ', l ',)                                                                       (10)
                                                                   mn2 k 3

                                                                                                                                             7
The equations of elastic vibrations the tether


We assume that the line of action of the tether tension is the center of mass
of the spacecraft, then   0 Q 0      




                     The equations of elastic vibrations the tether


                     l             3               e
             2      1      sin  cos   2 1     sin                (11)
                     l              k               k


                            l  l0   1  3cos    l 1  
                     c                l                                e
                      2 4 
          l                                                     2 l  sin 
                                                2                  2
                                                                                    (12)
                   mn k              k                                k




                                                                                           8
The elastic vibrations of tether near the local vertical

                    We assume, that:       O  

                            Motion equations of the elastic tether


              A B
      3        sin  cos   J 1  L  sin   2 L cos    2e 1     sin 
                                                                                              (13)
              kC
               c
   L               L  1  3   sin    1     cos   2e  cos  L sin  
                                                             2
                                                                                                (14)
           n2 k 4 m                                              


                                 l     ml02
            where          , L , J        , C  C0  m0 
                                                               2

                            l    l0      C




                                                                                                       9
The approximate analytical solutions

     The motion equation of the spacecraft under the action of the tension force
                             and the gravitational moment

                               C  T  sin(   )  3n 2 ( B  A) sin  cos 
                                                                                 (15)

where

     -angle between the longitudinal axis of the spacecraft
       and the local vertical
    ( ) - angle between the rope and the local vertical
  T  T ( ) - tension force
  A, B, C - inertia moments of the spacecraft
  3n 2 ( B  A) sin  cos    - gravitational moment

    t    - the slow time

     - small parameter
    CA



                                                                                          10
The approximate analytical solutions

    The motion equation of the spacecraft under the action of the tension force only

      ( )sin   ( ) cos    sin 2
                                                      (16)



  where
        ( )   2 ( ) cos  ( ),
        ( )   2 ( ) sin  ( ),
               3
         n 2  B  A / C ,
               2
        2 ( )  T ( ) / C


Exact solution in terms of elliptic functions for   0
                   2arcsin  sn(t  K (k ), k )      (17)

                                                                                       11
The approximate analytical solutions
The tension force and its direction change slowly over time                     T  T ( ),    ( )

                                      The adiabatic invariant

                         J (, k )    E (k )  (1  k 2 ) K  k   h  const
                                                                                                       (18)

                                  The approximate analytical solutions
                                                                            2                 3
                                                    h      1     h         1        h 
                min,max  t    (t )  2 arcsin                         2
                                                                  (t )  4          (t )   ...    (19)
                                                    (t ) 2                               


              If        - is small value, then

                                                                0
                                 min,max  t    (t )  A0                                            (20)
                                                                 (t )
where   A0   is the arbitrary constant

  Micro-acceleration at the point the remote at a distance d from the mass center

                                                  x0 d  4
                                    Wmax (t )             T0 T (t )
                                                                      3/4
                                                                                                         (21)
                                                    C
                                                                                                                12
The approximate analytical solutions
                        The simulations for the YES-2
The deployment trajectory of the TTS      The deflection angle of the tether from
                                          the local vertical and the tension force




   Oscillations of the spacecraft about                 Accelerations on
               mass center                  the spacecraft to point removed at d = 1m




                                                                                     13
The approximate analytical solutions

           The linearized equation of the spacecraft motion under
        the influence of the gravitational torque and the tension force


                                       a( )  c   b( )  0
                                                                                                      (22)


                                                                         B A
where   a( )  T ( )     cos  ( ), b( )  T ( ) sin  ( ), c  3n 2      0
                         C                           C                      C



            The approximate solution for the oscillation amplitude
                             of the spacecraft

                                       const C                               T (t ) sin  (t )
             max (t )                                                                                (23)
                             T (t ) cos  (t )  3n ( B  A)
                                                   2                T (t ) cos  (t )  3n2 ( B  A)


                                                                                                               14
Chaotic oscillations of the spacecraft
                   with a vertical tether
 The motion equations of the spacecraft with the elastic vertical tether for
                              a circular orbit
                A B
             3    sin  cos   J 1  L  sin   2 L cos 
                                                                                             (24)
                 kC
                  c
          L  2 4  L  1  3   sin    1     cos 
                                                            2
                                                                                               (25)
               n k m                                            
     Approximate law of change rope length (δ = 0)

                                     L                      c / m 1/2 / n, L1   3  2  2 
                             L  L1  0 sin                                                       
                                     
                                                              3
                                               
The tether will always be stretched (L> 1) if L0 
                                                              

       The equation of the perturbed motion of the spacecraft about its mass center

                        a sin   c sin  cos     sin  sin   2cos cos               (26)

             ml0           B A                 
                                           ml0 L0
where a              , c3           ,                         - the small parameter
            C  m1 2       C  m1 2      C  m1 2
                                                                                                             15
Chaotic oscillations of the spacecraft
                  with a vertical tether
           The equation of the unperturbed motion of the spacecraft

                              a sin   c sin  cos            (27)


                           2
The energy integral:              W ( )  E
                           2

Equilibrium position is defined as the roots of the equation

                                               c B A 1    3 2 
                  1   cos   sin   0,                    (28)
                                               a    m2l0 ES 

                 for     *    ,0   0,  

                                    *   arccos   1 
                 for the remaining provisions of
                                      *   , 0, 
                                                                            16
Chaotic oscillations of the spacecraft
             with a vertical tether
The types of spacecraft     The bifurcation diagram




1  cos  sin   0
Chaotic oscillations of the spacecraft
                 with a vertical tether
              The homo-heteroclinic trajectories (separatrix solutions)

k    c/a                                                          Separatrix solutions
1                                     d                                  2 d sinh t
       1      (t )  2arctg              ,   (t )  ( )   
                                                                                         ,   a  c , d   a  c
                                      cosh t                          (cosh t )  d
                                                                                   2    2
                                                                                                                 a

2     1,                                                                     2 d cosh t
                (t )  2arctg  d sinh t  ,   (t )  ( )  
                                                                                                ,     a  c, d 
                                                                                                                       a
                                                                               1  d 2 sinh 2 t                      ac
      1
                                                                              2 cosh t
3
      0                                          
                (t )  2arctg sinh at ,   (t )  ( )  
                                                       
                                                                              1  sinh 2 t
                                                                                            , a

                                         S        t                             sin  S
                (t )  2arctg  tg          th     ,   (t )  ( )   
                                                                                                ,
                                         2         2                         cosh t  cos  S
4     1
                              1        c2  a2       a
               S   arccos    ,           ,d 
                                         c          c

                                              S            t                           sin  S
                (t )    2arctg  ctg               th     ,   (t )  ( )  
                                                                                                       .
                                               2            2                       cosh t  cos  S
5
      1
                              1        c2  a2        a
               S   arccos    ,           , d 
                                         c           c

                                                                                                                            18
Chaotic oscillations of the spacecraft
                    with a vertical tether
                                                   Melnikov method
  The equation of perturbed motion of the spacecraft - a generalized Duffing equation

                          a sin   c sin  cos   sin sin t   .
                                                                                                  (29)

  Two first-order equations
                                                       f1  g1 ,
                                                                                                    (30)
                                                     f2  g2 ,
                                                                                                    (31)

where   f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t  

                                                   
  Melnikov function                M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,
                                                   

                                        
                         M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 )
                                            (          (                            (
                                        

                                               
                            M  ( k )    ( k ) )2dt   J k ) , k  1,2...5
                                                (               (
                                              


  The condition of absence of the chaos:                                 M  M
                                                                                                            19
Chaotic oscillations of the spacecraft
        with a vertical tether
               Improper integrals appearing in Melnikov function
                         for the different motion types
                             sinh 2                                      sinh
                                                                                             2
                                                                                
     I   (1)
               2d     2
                                         sin 1 d , J   4d 2  
                                                        (1)
                                                                                  2
                                                                                     d
                       (cosh   d )                               cosh   d
                                                                                  
                               2     2 2                                    2




                            sinh 2                                        cosh
                                                                                                     2
                                                                                 
 I   (2)
               d  2
                                         sin 2 d , J   4d 2  
                                                        (2)
                                                                                 2 
                                                                                      d
                      (d sinh   1)                               1  d sinh 
                                                                                   
                          2     2      2                                    2




                             sinh 2                                  cosh 
                                                                                             2
                                                                                   
         I   (3)
                                        sin  2 d , J   4  
                                                           (3)
                                                                                      d
                       (sinh 2   1) 2                           1  sinh 2  
                                                                                   
                                                                                         2
                                  sinh
                                                                          sin  S     
         (4)
                (1  d )       2
                                               sin 4 d , J     
                                                              (4)
                                                                                           d
                                                                       cosh   cos  
     I                      (cosh   d ) 2
                                                                                      S 


                                                                                                 2
                                  sinh
                                                                          sin  S     
     (5)
                (1  d )       2
                                               sin 5 d , J     
                                                              (5)
                                                                                           d
                                                                       cosh   cos  
 I                          (cosh   d ) 2
                                                                                      S 



where                 i   / ,   t
                                                                                                         20
Chaotic oscillations of the spacecraft
              with a vertical tether
                   The Poincare sections




                  Load mass 100kg          Load mass 100kg
Load mass 20kg
       0                 0                   5  104




                                                              21
Chaotic oscillations of the spacecraft
                 with a vertical tether
                         Numerical simulation
   The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg,
p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether,
              inertia moments: A = 2500kgm2, B = C = 10000kgm2,
                 the initial velocity load-1m / s (the case k = 2).

                           The Melnikov functions




                                                                                    22
The main results were published
                       in the following papers
1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially
Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198.
2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol.
46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.
3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite -
Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.
4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings
1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World
Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16.
5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on
Engineering 2009 v. 2, pp. 1827-1831.
6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the
Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59
p. (ISBN: 978-0-7354-0576-9 )
7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of
Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages
doi:10.1155/2009/319179. 2009.
8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied
Mathematics and Mechanics 71 (2007) 926–932.




                                                                                                          23
1 of 23

Recommended

The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure by
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureThe Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
The Dynamics and Control of Axial Satellite Gyrostats of Variable StructureTheoretical mechanics department
1.9K views24 slides
Attitude Dynamics of Re-entry Vehicle by
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleTheoretical mechanics department
4.1K views41 slides
Talk spinoam photon by
Talk spinoam photonTalk spinoam photon
Talk spinoam photonMichael London
230 views24 slides
Ip entrance test paper 1 by
Ip entrance test paper 1Ip entrance test paper 1
Ip entrance test paper 1APEX INSTITUTE
1.4K views17 slides
Dimen by
DimenDimen
Dimenfoxtrot jp R
122 views4 slides
IJCER (www.ijceronline.com) International Journal of computational Engineerin... by
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
167 views8 slides

More Related Content

What's hot

Simulation of Steam Coal Gasifier by
Simulation of Steam Coal GasifierSimulation of Steam Coal Gasifier
Simulation of Steam Coal Gasifieregepaul
1.1K views18 slides
N. Bilic - Supersymmetric Dark Energy by
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
870 views45 slides
On gradient Ricci solitons by
On gradient Ricci solitonsOn gradient Ricci solitons
On gradient Ricci solitonsmnlfdzlpz
419 views125 slides
Module 13 Gradient And Area Under A Graph by
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
2.6K views12 slides
Existence of Hopf-Bifurcations on the Nonlinear FKN Model by
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelIJMER
432 views6 slides

What's hot(20)

Simulation of Steam Coal Gasifier by egepaul
Simulation of Steam Coal GasifierSimulation of Steam Coal Gasifier
Simulation of Steam Coal Gasifier
egepaul1.1K views
N. Bilic - Supersymmetric Dark Energy by SEENET-MTP
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
SEENET-MTP870 views
On gradient Ricci solitons by mnlfdzlpz
On gradient Ricci solitonsOn gradient Ricci solitons
On gradient Ricci solitons
mnlfdzlpz419 views
Module 13 Gradient And Area Under A Graph by guestcc333c
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
guestcc333c2.6K views
Existence of Hopf-Bifurcations on the Nonlinear FKN Model by IJMER
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
IJMER432 views
P2 Area Under A Graph Modul by guestcc333c
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modul
guestcc333c2.1K views
Solucionario Mecácnica Clásica Goldstein by Fredy Mojica
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
Fredy Mojica28.7K views
Module 16 Earth As A Sphere by guestcc333c
Module 16  Earth As A SphereModule 16  Earth As A Sphere
Module 16 Earth As A Sphere
guestcc333c1.1K views
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi... by Alessandro Palmeri
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Alessandro Palmeri723 views
Zontos___EP_410___Particle_Motion by Zoe Zontou
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
Zoe Zontou99 views
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected by foxtrot jp R
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
foxtrot jp R407 views
D. Mladenov - On Integrable Systems in Cosmology by SEENET-MTP
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
SEENET-MTP1.3K views
20150304 ims mikiya_fujii_dist by Fujii Mikiya
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
Fujii Mikiya1.4K views
PID control dynamics of a robotic arm manipulator with two degrees of freedom. by popochis
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
popochis14.4K views
Jets MET Atlas Jamboree 2011 by Jay Wacker
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
Jay Wacker372 views
Research Inventy : International Journal of Engineering and Science by researchinventy
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
researchinventy267 views
IJCER (www.ijceronline.com) International Journal of computational Engineeri... by ijceronline
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
ijceronline243 views

Viewers also liked

Chaotic motions of tethered satellites with low thrust by
Chaotic motions of tethered satellites with low thrust Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust Theoretical mechanics department
1.6K views22 slides
Mathematical models and analysis of the space tether systems motion by
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Theoretical mechanics department
1.8K views26 slides
Написание научной статьи на английском языке by
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языкеTheoretical mechanics department
8.3K views10 slides
The Removal of Large Space Debris Using Tethered Space Tug by
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
13.5K views28 slides
Seminar project by
Seminar projectSeminar project
Seminar projectAnjani Sharma
2.5K views15 slides
Satellite dynamic and control by
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and controlZuliana Ismail
8K views47 slides

Similar to Dynamics of Satellite With a Tether System

#26 Key by
#26 Key#26 Key
#26 KeyLamar1411_SI
14.3K views2 slides
Da32633636 by
Da32633636Da32633636
Da32633636IJERA Editor
123 views4 slides
Da32633636 by
Da32633636Da32633636
Da32633636IJERA Editor
166 views4 slides
Angdist by
AngdistAngdist
Angdistkorkian
28 views36 slides
Angdist by
AngdistAngdist
Angdistkorkian
45 views36 slides
Part 1:Electrostatics by
Part 1:ElectrostaticsPart 1:Electrostatics
Part 1:ElectrostaticsMuhammad Ramlee Kamarudin
3K views182 slides

Similar to Dynamics of Satellite With a Tether System(20)

Angdist by korkian
AngdistAngdist
Angdist
korkian28 views
Angdist by korkian
AngdistAngdist
Angdist
korkian45 views
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010 by Colm Connaughton
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Colm Connaughton663 views
Colpitts startup by vulanskyi
Colpitts startupColpitts startup
Colpitts startup
vulanskyi2K views
Atomic Structure (II) by Bernard Ng
Atomic Structure (II)Atomic Structure (II)
Atomic Structure (II)
Bernard Ng808 views
การเคล อนท__แบบหม_น by rsurachat
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_น
rsurachat145 views
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F... by ijrap
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
ijrap18 views
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F... by ijrap
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
ijrap13 views
Phonon frequency spectrum through lattice dynamics and normal coordinate anal... by Alexander Decker
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Alexander Decker379 views
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA... by Xavier Terri
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
Xavier Terri351 views
Torsional vibrations and buckling of thin WALLED BEAMS by SRINIVASULU N V
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
SRINIVASULU N V1.3K views
A new six point finite difference scheme for nonlinear waves interaction model by Alexander Decker
A new six point finite difference scheme for nonlinear waves interaction modelA new six point finite difference scheme for nonlinear waves interaction model
A new six point finite difference scheme for nonlinear waves interaction model
Alexander Decker308 views
Properties of Metallic Helimagnets by Kwan-yuet Ho
Properties of Metallic HelimagnetsProperties of Metallic Helimagnets
Properties of Metallic Helimagnets
Kwan-yuet Ho897 views

More from Theoretical mechanics department

Космический мусор by
Космический мусорКосмический мусор
Космический мусорTheoretical mechanics department
816 views50 slides
Основы SciPy by
Основы SciPyОсновы SciPy
Основы SciPyTheoretical mechanics department
807 views57 slides
Основы NumPy by
Основы NumPyОсновы NumPy
Основы NumPyTheoretical mechanics department
859 views49 slides
Python. Объектно-ориентированное программирование by
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Theoretical mechanics department
1.5K views39 slides
Python. Обработка ошибок by
Python. Обработка ошибокPython. Обработка ошибок
Python. Обработка ошибокTheoretical mechanics department
775 views18 slides
Python: ввод и вывод by
Python: ввод и выводPython: ввод и вывод
Python: ввод и выводTheoretical mechanics department
1K views31 slides

More from Theoretical mechanics department(20)

Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+ by Theoretical mechanics department
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+

Recently uploaded

Ransomware is Knocking your Door_Final.pdf by
Ransomware is Knocking your Door_Final.pdfRansomware is Knocking your Door_Final.pdf
Ransomware is Knocking your Door_Final.pdfSecurity Bootcamp
66 views46 slides
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc
72 views29 slides
Future of Indian ConsumerTech by
Future of Indian ConsumerTechFuture of Indian ConsumerTech
Future of Indian ConsumerTechKapil Khandelwal (KK)
24 views68 slides
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...Jasper Oosterveld
27 views49 slides
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensorssugiuralab
23 views15 slides
MVP and prioritization.pdf by
MVP and prioritization.pdfMVP and prioritization.pdf
MVP and prioritization.pdfrahuldharwal141
37 views8 slides

Recently uploaded(20)

TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc72 views
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab23 views
The Forbidden VPN Secrets.pdf by Mariam Shaba
The Forbidden VPN Secrets.pdfThe Forbidden VPN Secrets.pdf
The Forbidden VPN Secrets.pdf
Mariam Shaba20 views
Special_edition_innovator_2023.pdf by WillDavies22
Special_edition_innovator_2023.pdfSpecial_edition_innovator_2023.pdf
Special_edition_innovator_2023.pdf
WillDavies2218 views
"Running students' code in isolation. The hard way", Yurii Holiuk by Fwdays
"Running students' code in isolation. The hard way", Yurii Holiuk "Running students' code in isolation. The hard way", Yurii Holiuk
"Running students' code in isolation. The hard way", Yurii Holiuk
Fwdays24 views
PharoJS - Zürich Smalltalk Group Meetup November 2023 by Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi139 views
2024: A Travel Odyssey The Role of Generative AI in the Tourism Universe by Simone Puorto
2024: A Travel Odyssey The Role of Generative AI in the Tourism Universe2024: A Travel Odyssey The Role of Generative AI in the Tourism Universe
2024: A Travel Odyssey The Role of Generative AI in the Tourism Universe
Simone Puorto13 views
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Future of AR - Facebook Presentation by ssuserb54b561
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
ssuserb54b56122 views

Dynamics of Satellite With a Tether System

  • 1. Vladimir S. Aslanov aslanov_vs@mail.ru Dynamics of satellite with a Tether System Theoretical Mechanics Department www.termech.ru Samara State Aerospace University, Russia www.ssau.ru 2012
  • 2. Statement of the problem The motion about a centre of mass of a spacecraft (satellite) with a elastic heavy tethered system at a orbit is studied. Tethered satellite systems (TTS) includes: - rigid satellite (spacecraft), - elastic heavy tether, - end load. The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and others. 2
  • 3. Example of the Tethered Satellite Systems Scheme of the dynamic deployment of TSS «Foton-М3" №3 – YES2" (2008) Initial Foton-M3 parameters are assumed as follows: Mass 6530 kg Ballistic coefficient 0.0123 m2/kg. Inclination 63 degrees Minimum orbital altitude 262 km Maximum orbital altitude 304 km Tether parameters are assumed as follows: Diameter 0.5 mm Length 30000 m Mass density 0.00018 kg/m Initial Speed of tether deployment 2.58 m/c Mass End Load 12 kg 3
  • 4. Aims of the research 1. To obtain mathematical models of the plane motion of the satellite of about of mass center under the influence of elastic the tether system. 2. To deduce approximate analytical solutions describing the oscillations of the satellite caused by the change magnitude and direction of the tether force. 3. To build models chaotic behavior of the satellite and to study of the satellite motion under the influence the elastic tether of the chaotic dynamics methods. 4. To find the approximate estimates of the accelerations in the satellite arising from the deployment of the tether. 4
  • 5. The Lagrange equations Kinetic energy of the TSS 1 1 2 1 T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2   2 2 2        (1) 2 2 i0 2 where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates Potential energy 2 mi 3  m1l 2 c W      3  A  B  cos   2 cos 2   (l  l0 )2 (2) i 0 ri 2r0 8r13 2 Lagrange equations of the second kind d L L   Qj   D0 P, l  PD2 dt q j q j  where L  T W - Lagrange function, Qj - nonpotential forces 5
  • 6. The motion equations The approximate motion equations of the TTS We assume  / l  1, l / r  1 C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q    l  (3) ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q     (4)    l    Q  sin(   )       f3 (l, , , , )  l m (5)  mr 2  C0  I   C0  I  f3 (l, , r , , )  Q      (6)  3 I 9 4  r    r 2  2  1  3cos 2    4  A  B  cos 2   Qr (7) r 2mr 2mr where m  m0 m2 / m, I  ml 2 6
  • 7. The motion equations on a elliptic orbit Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the generalized coordinates and are known through p p r     nk 2 n   p 3 1  e cos k d Substitution variable from t to the true anomaly angle θ: dt  n 1  e cos  2 The motion equations Q C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)  (8) n2 k 3 Q ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)  (9) n2 k 3 Ql  sin(   )k   kl   f3* ( , , , ', ', l ',)  (10) mn2 k 3 7
  • 8. The equations of elastic vibrations the tether We assume that the line of action of the tether tension is the center of mass of the spacecraft, then 0 Q 0  The equations of elastic vibrations the tether l 3 e    2 1      sin  cos   2 1     sin  (11) l k k l  l0   1  3cos    l 1   c l e 2 4  l      2 l  sin  2 2 (12) mn k k k 8
  • 9. The elastic vibrations of tether near the local vertical We assume, that:   O   Motion equations of the elastic tether A B    3 sin  cos   J 1  L  sin   2 L cos    2e 1     sin    (13) kC c L   L  1  3   sin    1     cos   2e  cos  L sin   2 (14) n2 k 4 m    l ml02 where   , L , J  , C  C0  m0  2 l l0 C 9
  • 10. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force and the gravitational moment C  T  sin(   )  3n 2 ( B  A) sin  cos   (15) where  -angle between the longitudinal axis of the spacecraft and the local vertical    ( ) - angle between the rope and the local vertical T  T ( ) - tension force A, B, C - inertia moments of the spacecraft 3n 2 ( B  A) sin  cos  - gravitational moment   t - the slow time  - small parameter   CA 10
  • 11. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force only   ( )sin   ( ) cos    sin 2  (16) where  ( )   2 ( ) cos  ( ),  ( )   2 ( ) sin  ( ), 3   n 2  B  A / C , 2  2 ( )  T ( ) / C Exact solution in terms of elliptic functions for   0     2arcsin  sn(t  K (k ), k ) (17) 11
  • 12. The approximate analytical solutions The tension force and its direction change slowly over time T  T ( ),    ( ) The adiabatic invariant J (, k )    E (k )  (1  k 2 ) K  k   h  const   (18) The approximate analytical solutions 2 3 h 1  h  1  h   min,max  t    (t )  2 arcsin   2   (t )  4   (t )   ... (19)  (t ) 2     If   - is small value, then 0  min,max  t    (t )  A0 (20)  (t ) where A0 is the arbitrary constant Micro-acceleration at the point the remote at a distance d from the mass center x0 d  4 Wmax (t )  T0 T (t ) 3/4 (21) C 12
  • 13. The approximate analytical solutions The simulations for the YES-2 The deployment trajectory of the TTS The deflection angle of the tether from the local vertical and the tension force Oscillations of the spacecraft about Accelerations on mass center the spacecraft to point removed at d = 1m 13
  • 14. The approximate analytical solutions The linearized equation of the spacecraft motion under the influence of the gravitational torque and the tension force    a( )  c   b( )  0  (22)   B A where a( )  T ( ) cos  ( ), b( )  T ( ) sin  ( ), c  3n 2 0 C C C The approximate solution for the oscillation amplitude of the spacecraft const C T (t ) sin  (t )  max (t )   (23) T (t ) cos  (t )  3n ( B  A) 2 T (t ) cos  (t )  3n2 ( B  A) 14
  • 15. Chaotic oscillations of the spacecraft with a vertical tether The motion equations of the spacecraft with the elastic vertical tether for a circular orbit A B    3 sin  cos   J 1  L  sin   2 L cos    (24) kC c L  2 4  L  1  3   sin    1     cos  2 (25) n k m   Approximate law of change rope length (δ = 0) L    c / m 1/2 / n, L1   3  2  2  L  L1  0 sin     3  The tether will always be stretched (L> 1) if L0   The equation of the perturbed motion of the spacecraft about its mass center    a sin   c sin  cos     sin  sin   2cos cos   (26) ml0 B A  ml0 L0 where a  , c3 ,  - the small parameter C  m1 2 C  m1 2 C  m1 2 15
  • 16. Chaotic oscillations of the spacecraft with a vertical tether The equation of the unperturbed motion of the spacecraft    a sin   c sin  cos (27)  2 The energy integral:  W ( )  E 2 Equilibrium position is defined as the roots of the equation c B A 1 3 2  1   cos   sin   0,       (28) a   m2l0 ES  for  *    ,0   0,    *   arccos   1  for the remaining provisions of  *   , 0,  16
  • 17. Chaotic oscillations of the spacecraft with a vertical tether The types of spacecraft The bifurcation diagram 1  cos  sin   0
  • 18. Chaotic oscillations of the spacecraft with a vertical tether The homo-heteroclinic trajectories (separatrix solutions) k  c/a Separatrix solutions 1  d  2 d sinh t   1   (t )  2arctg   ,   (t )  ( )     ,   a  c , d   a  c  cosh t  (cosh t )  d 2 2 a 2   1, 2 d cosh t   (t )  2arctg  d sinh t  ,   (t )  ( )    ,   a  c, d  a 1  d 2 sinh 2 t ac  1 2 cosh t 3  0     (t )  2arctg sinh at ,   (t )  ( )    1  sinh 2 t , a  S t   sin  S   (t )  2arctg  tg th  ,   (t )  ( )     ,  2 2 cosh t  cos  S 4  1  1 c2  a2 a  S   arccos    ,   ,d    c c  S t   sin  S   (t )    2arctg  ctg th  ,   (t )  ( )    .  2 2 cosh t  cos  S 5  1  1 c2  a2 a  S   arccos    ,   , d    c c 18
  • 19. Chaotic oscillations of the spacecraft with a vertical tether Melnikov method The equation of perturbed motion of the spacecraft - a generalized Duffing equation   a sin   c sin  cos   sin sin t   .   (29) Two first-order equations     f1  g1 ,  (30)   f2  g2 ,  (31) where f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t    Melnikov function M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,   M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 ) ( ( (   M  ( k )    ( k ) )2dt   J k ) , k  1,2...5 ( (  The condition of absence of the chaos: M  M 19
  • 20. Chaotic oscillations of the spacecraft with a vertical tether Improper integrals appearing in Melnikov function for the different motion types sinh 2 sinh 2     I (1)   2d  2 sin 1 d , J   4d 2   (1) 2 d  (cosh   d )  cosh   d   2 2 2 2 sinh 2 cosh 2     I (2)   d  2 sin 2 d , J   4d 2   (2) 2  d  (d sinh   1)  1  d sinh    2 2 2 2 sinh 2   cosh  2   I (3)   sin  2 d , J   4   (3) d   (sinh 2   1) 2  1  sinh 2     2 sinh    sin  S  (4)  (1  d )  2 sin 4 d , J      (4) d  cosh   cos   I   (cosh   d ) 2  S  2 sinh    sin  S  (5)  (1  d )  2 sin 5 d , J      (5) d  cosh   cos   I   (cosh   d ) 2  S  where i   / ,   t 20
  • 21. Chaotic oscillations of the spacecraft with a vertical tether The Poincare sections Load mass 100kg Load mass 100kg Load mass 20kg  0  0   5  104 21
  • 22. Chaotic oscillations of the spacecraft with a vertical tether Numerical simulation The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg, p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether, inertia moments: A = 2500kgm2, B = C = 10000kgm2, the initial velocity load-1m / s (the case k = 2). The Melnikov functions 22
  • 23. The main results were published in the following papers 1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198. 2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013. 3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424. 4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16. 5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on Engineering 2009 v. 2, pp. 1827-1831. 6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59 p. (ISBN: 978-0-7354-0576-9 ) 7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages doi:10.1155/2009/319179. 2009. 8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932. 23