Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Rで分かる力学系

1,319 views

Published on

Tsukuba.R#4

  • Be the first to comment

Rで分かる力学系

  1. 1. R 2009 3 1 ( ) R 2009 3 1 1 / 23
  2. 2. : ( ) ! , @tkf, id:tkf41, (id:artk ) : 4 1 : http://arataka.wordpress.com : Python, C/C++, PHP, Javascript R : / ( ) R 2009 3 1 2 / 23
  3. 3. R? R ! ( ) R 2009 3 1 3 / 23
  4. 4. = OK R? R ! ( ) R 2009 3 1 3 / 23
  5. 5. = OK ⊂ R? R ! ( ) R 2009 3 1 3 / 23
  6. 6. = OK ⊂ R? R ! ( ) R 2009 3 1 3 / 23
  7. 7. = OK ⊂ R? R ( ) ! ( ) R 2009 3 1 3 / 23
  8. 8. = OK ⊂ R? R ( ) ( ) ! ( ) R 2009 3 1 3 / 23
  9. 9. = OK ⊂ R? R ( ) ( ) ///////////// ! ( ) R 2009 3 1 3 / 23
  10. 10. 3 x = −x ¨ ( ) x = −x + c x ¨ ˙ !) x = −x + c(1 − x2 ) x Van der Pol ( ¨ ˙ Lorenz attractor ( !) x = σ(y − x) ˙ y = x(ρ − z) − y ˙ z = xy − βz ˙ ( ) R 2009 3 1 4 / 23
  11. 11. 1: x = −x ¨ ((x, x) ) ˙ : ⇔ ( ) R 2009 3 1 5 / 23
  12. 12. 2: x = −x + c x ¨ ˙ (0, 0) : ( ) ⇒ ( ) R 2009 3 1 6 / 23
  13. 13. 3: Van der Pol x = −x + c(1 − x2 ) x ¨ ˙ ⇒ ! ⇒ ( ) R 2009 3 1 7 / 23
  14. 14. 4: Lorenz attractor ! ⇒ ( ) R 2009 3 1 8 / 23
  15. 15. ( ) ( ) ( ) R 2009 3 1 9 / 23
  16. 16. (bifurcation) ? 1 2 Saddle-Node Bifurcation Pitchfork Bifurcation 2 ( ) R 2009 3 1 10 / 23
  17. 17. 1: Saddle-Node Bifurcation (1/2) : x = x2 − r ˙ x=0 ˙ ! x = x2 − rx = (x + r)(x − r) ˙ √ x=± r( ) r>0 y y y y = x^2 - r dx/dt < 0 x x x dx/dt > 0 dx/dt > 0 dx/dt > 0 dx/dt > 0 (a) r < 0 (b) r = 0 (c) r > 0 ( ) R 2009 3 1 11 / 23
  18. 18. 1: Saddle-Node Bifurcation (2/2) : x = x2 − r ˙ (a) r < 0: ( ) (b) r = 0: x<0 x=0 ( ) x>0 (c) r > 0: √ x < √r x=0 ( ) x> r y y y y = x^2 - r dx/dt < 0 x x x dx/dt > 0 dx/dt > 0 dx/dt > 0 dx/dt > 0 (a) r < 0 (b) r = 0 (c) r > 0 ( ) R 2009 3 1 12 / 23
  19. 19. 2: Pitchfork Bifurcation (1/2) : x = −x3 + rx ˙ x=0 ˙ x ! x = −x3 + rx = − 3 (x + r)(x − r) ˙ √ x=± r( ) r>0 x=0 y y y y = x^3 + rx dx/dt < 0 dx/dt < 0 dx/dt < 0 dx/dt < 0 x x x dx/dt > 0 dx/dt > 0 dx/dt > 0 dx/dt > 0 (a) r < 0 (b) r = 0 (c) r > 0 ( ) R 2009 3 1 13 / 23
  20. 20. 2: Pitchfork Bifurcation (2/2) : x = −x3 + rx ˙ (a) r < 0: x = 0 (b) r = 0: x = 0 (c) r > 0: √ x<0 x = − √r x>0 x=+ r ( ) x=0 y y y y = x^3 + rx dx/dt < 0 dx/dt < 0 dx/dt < 0 dx/dt < 0 x x x dx/dt > 0 dx/dt > 0 dx/dt > 0 dx/dt > 0 (a) r < 0 (b) r = 0 (c) r > 0 ( ) R 2009 3 1 14 / 23
  21. 21. ! ( ) R 2009 3 1 15 / 23
  22. 22. ¨ Rossler Attractor x = −y − z ˙ y = x + ay ˙ z = b + (c − x)z ˙ z xz ˙ ( ) R 2009 3 1 16 / 23
  23. 23. ¨ Rossler Attractor (a) c = 4 (b) c = 6 (c) c = 8.5 (d) c = 8.7 (e) c = 9 (f) c = 12 (g) c = 12.8 (h) c = 13 (i) c = 18 ( ) R 2009 3 1 17 / 23
  24. 24. Chua’s Circuit x = c1 (y − x − g(x)) ˙ y = c2 (x − y + z) ˙ z = −c3 y ˙ m0 −m1 g(x) = m1 x + (|x + 1| − |x − 1|) 2 g(x) ( ) R 2009 3 1 18 / 23
  25. 25. Chua’s Circuit (a) c3 = 50 (b) c3 = 35 (c) c3 = 33.8 (d) c3 = 33.6 (e) c3 = 33 (f) c3 = 25.58 ( ) R 2009 3 1 19 / 23
  26. 26. CTRNN (3 nodes) n τi xi = −xi + wi j tanh(x j + b j ) ˙ j=1 n=3 tanh ( ) R 2009 3 1 20 / 23
  27. 27. CTRNN (3 nodes) τ3 = 1.0 τ3 = 2.0 τ3 = 3.0 τ2 = 1.0 τ2 = 1.9 τ2 = 2.0 τ2 = 4.0 ( ) R 2009 3 1 21 / 23
  28. 28. ( ) R 2009 3 1 22 / 23
  29. 29. 3 : , , ( ) R 2009 3 1 22 / 23
  30. 30. 3 : , , : Saddle-Node Bifurcation Pitchfork Bifurcation ( ) R 2009 3 1 22 / 23
  31. 31. 3 : , , : Saddle-Node Bifurcation Pitchfork Bifurcation ( ) R 2009 3 1 22 / 23
  32. 32. 3 : , , : Saddle-Node Bifurcation Pitchfork Bifurcation R ( ) R 2009 3 1 22 / 23
  33. 33. Kathleen T. Alligood Tim Sauer James A. Yorke, “Chaos: An Introduction to Dynamical Systems”, Springer, 1997 Steven H. Strogatz, “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering”, Westview Pr, 2001 Randall D. Beer, “On the Dynamics of Small Continuous-Time Recurrent Neural Networks”, Adaptive Behavior, Vol. 3, No. 4, 469-509 (1995) ( ) R 2009 3 1 23 / 23

×