Assistive Technologies For Spinal Cord Injured Individuals

3,353 views

Published on

This a presentation on assistive technologies for spinal cord injured individuals and focused on computer control interfaces. It was performed in the scope of my Master Thesis. Check for more at my webpage (http://www.di.fc.ul.pt/~tjvg). Technical report at http://www.di.fc.ul.pt/~tjvg/amc/emgtexting/files/ta_tr.pdf

Published in: Technology, Health & Medicine
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,353
On SlideShare
0
From Embeds
0
Number of Embeds
995
Actions
Shares
0
Downloads
0
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Assistive Technologies For Spinal Cord Injured Individuals

  1. 1. A Survey ASSISTIVE TECHNOLOGIES FOR  SPINAL CORD INJURED  INDIVIDUALS December / 2007    Tiago  Guerreiro
  2. 2. Tradicional Devices Tradicional Interactions
  3. 3. What about  the Others? 
  4. 4. Spinal Cord largest nerve in the body carry messages between brain and the spinal  nerves
  5. 5. We have the whole world in our hands.
  6. 6. Assistive  Technologies
  7. 7. Potential Users
  8. 8. Direct Selection Scanning Encoding Dimensionality and Input Speed
  9. 9. Accuracy
  10. 10. Ease of use
  11. 11. Aesthetics, Hygiene and Acceptance
  12. 12. Mobility Adequacy
  13. 13. Maturity, Availability and Cost
  14. 14. Soft  Adaptations
  15. 15. Expanded Keyboards Compact Keyboards Keyguards Typing Aids (Sticks)
  16. 16. Trackballs Alternative Mice Joysticks Touchpads
  17. 17. Mouse emulators Sticky Keys Bounce Keys Invisible Keyguard On-Screen Keyboards Key Repeat Time Key Hold Time Key Mouse
  18. 18. Switches, Sticks and Pointers
  19. 19. Button switch Thumb switch Finger tip Switch (Shannon et al, 1981) Multiple Switches
  20. 20. TonguePoint (Salem and Zhai, 1997) Bite switch Jouse2 – Joystick-operated Mouse
  21. 21. Cheek Switch Stick Head Switch
  22. 22. Switches, Sticks and Pointers
  23. 23. Sound‐Based Interfaces
  24. 24. Motivation natural and extensive high dimensionality direct selection works if consistent…
  25. 25. Speech recognition errors inadequate for continous control target‐based solutions error prone (Dai et al,, 2004)
  26. 26. Speech Keyboards letters (PA) and frequent words  (Dabbagh and Damper, 1985) row‐column encoding  (Dabbagh and Damper, 1985)  (Su and Chung, 2001)
  27. 27. Speech Mouse direction‐based solutions  predictive cursor (Karimullah and Sears, 2002) grid‐based solutions (Dai et al., 2004)
  28. 28. Wheelchair Control some attempts (Youdin et al., 1980) (Mazo et al., 1995) difficult and dangerous (Simpson et al., 2002) limited time range (Amori et al., 1992) proximity sensors (Simpson et al., 1992)
  29. 29. Environmental Control normally non‐critical  two level encoding selection (Damper, 1986) emergency mechanical switch (Carvalho et al., 1999)
  30. 30. (Igarashi and Hughes, 2001)
  31. 31. Vocal Joystick (Bilmes et al., 2006) Accoustic Mouse Pointer (Sporka et al., 2006)
  32. 32. Aural Flow Monitoring (Vaidyanathan et al., 2006; Vaidyanathan et al., 2007) tooth‐touch sound (Kuzume and Morimoto, 2006)
  33. 33. Sound Interfaces
  34. 34. Tracking Interfaces
  35. 35. Electrooculography
  36. 36. Relative mapping (Norris and Wilson, 1997) EagleEyes (Gips et al., 1996) (Manabe and Fukumoto, 2006) (Barea et al., 2002)
  37. 37. Head Optical Pointers (Chen et al., 2007) Lomak Nod and Shake (Hamman et al., 1990)
  38. 38. IR Reflectance Tracking Tobii 1750 Eye Tracker HeadMouse® Extreme
  39. 39. Appearance‐Based Tracking Face Mouse (Perini et al., 2006) Camera Mouse (Gips et al., 2000) Clicks through sound/switch Facial Mouse (Granollers et al., 2006)
  40. 40. Motion and Gesture Tilt Sensing (Chen et al., 2001) Intelligent Sweet Home (Do et al., 2005) WebColor Detector (Granollers et al., 2006)
  41. 41. Ultrasound (Lukaszewicz, 2003) HeadMaster Plus Telephone keypad (Coyle and Stewart, 1998) (Ford and Sheredos, 1995)
  42. 42. Tracking Interfaces
  43. 43. Myographic Interfaces
  44. 44. Muscle Contractions Electric Potencial Difference
  45. 45. Surface EMG
  46. 46. (Jeong et al., 2005) (Tarng et al., 1997) Intelligent Sweet Home (Song et al., 2005) (Park et al., 1999)
  47. 47. Myographic Interfaces
  48. 48. Brain‐Computer Interfaces
  49. 49. Magnetoencephalography (MEG) Magnetic Ressonance Imaging (fMRI) Positron Emission Tomography
  50. 50. Electroencephalography inexpensive ease of acquisition high temporal  resolution real‐time direct correlation  with brain activity
  51. 51. Visual Evoked Potentials (Vidal, 1973) Brain Response Interface (Sutter, 1992) P300 Evoked Potentials (Farwell and Donchin, 1988) (Wolpaw et al., 2002) (Hoffman et al., 2007) Slow Cortical Potentials Thought Translation Device (Birbaumer et al, 1999) mu and Beta Rythms (Wolpaw and McFarland et al, 2004) (Pfurtscheller et al., 2003, 2006)
  52. 52. Brain‐Computer Interfaces
  53. 53. Breath Interfaces
  54. 54. Sip and Puff Mouse (Kitto et al., 1994) Sip and Puff Switch Breath Joystick (Grigori and Tatiana,2000) Thermal Plumes (Michel and Rancour, 2004) BLUI (Patel and Abowd, 2007) Breath Dasher (Shorrock et al, 2004)
  55. 55. Breath Interfaces
  56. 56. Overall Discussion
  57. 57. Potential Users
  58. 58. Direct Selection Scanning Encoding Dimensionality and Input Speed
  59. 59. Accuracy
  60. 60. Ease of use
  61. 61. Aesthetics, Hygiene and Acceptance
  62. 62. Mobility Adequacy
  63. 63. Maturity, Availability and Cost
  64. 64. Concluding Remarks several technologies for  several targets all groups covered ….but still highly limited
  65. 65. TIAGO GUERREIRO tjvg@immi.inesc.pt

×