Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Federica Russo Université Catholique de Louvain Centre for Philosophy of Natural and Social Science - LSE Overview: Philos...
Philosophy of probability: theory and interpretations <ul><li>Axioms: </li></ul><ul><li>Let S be a collection of sentences...
<ul><li>Consequences: </li></ul><ul><li>a. P (  A) = 1    P (A) </li></ul><ul><li>b. P (A) = P (B) if in all models A  ...
Interpretations of probability <ul><li>Logical interpretation </li></ul><ul><ul><li>Probability is the ratio between favou...
Dutch Book arguments <ul><li>Within subjective interpretation: probabilities are degrees of belief </li></ul><ul><li>Goal:...
Varieties of Bayesianism <ul><li>Subjective Bayesianism </li></ul><ul><li>coherence is the only constraint on probability ...
Philosophy of causality: probability and causality <ul><li>Motivation for the probabilistic  approach </li></ul><ul><li>Pr...
Suppes: causal relations among events <ul><li>Causes precede effects in time by definition </li></ul><ul><li>Causes increa...
Suppes: causal relations among quantitative properties <ul><li>Restate former definitions in terms of random variables and...
Traditional problems <ul><li>Improbable consequences </li></ul><ul><li>Levels of causation:  </li></ul><ul><ul><li>type ca...
My research project: some ideas in progress <ul><li>Causality: metaphysics, epistemology, or methodology? </li></ul><ul><l...
<ul><li>My project: </li></ul><ul><li>Is in the epistemology of causality </li></ul><ul><li>Attempts to extrapolate a  not...
Intermezzo:  what is a causal model? <ul><li>Causal models have two parts: </li></ul><ul><li>A set of equations </li></ul>...
Causal models: an example C 3  =   1 C 2  +   2 C 1  +   i Child mortality and mother’s education C 1  = mother’s edica...
Two claims about causality <ul><li>What is causality? </li></ul><ul><li>causality is a measure of change </li></ul><ul><li...
Related problems <ul><li>What about probability? </li></ul><ul><li>objective Bayesian approach </li></ul><ul><li>What abou...
Upcoming SlideShare
Loading in …5
×

Oxford Presentation

1,003 views

Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

Oxford Presentation

  1. 1. Federica Russo Université Catholique de Louvain Centre for Philosophy of Natural and Social Science - LSE Overview: Philosophy of probability: theory and interpretations Philosophy of causality: probability and causality My research project: some ideas in progress
  2. 2. Philosophy of probability: theory and interpretations <ul><li>Axioms: </li></ul><ul><li>Let S be a collection of sentences and P a probability function satisfying Kolmogorov axioms : </li></ul><ul><li>1. P (A)  0 </li></ul><ul><li>2. P (A) = 1 if A is true in all models </li></ul><ul><li>3. P (A  B) = P (A) + P (B) if A, B mutually exclusive </li></ul>
  3. 3. <ul><li>Consequences: </li></ul><ul><li>a. P (  A) = 1  P (A) </li></ul><ul><li>b. P (A) = P (B) if in all models A  B </li></ul><ul><li>c. P (A  B) = P (A) + P (B)  P (A  B) </li></ul><ul><li>Conditional probability: </li></ul><ul><li>P (A | B) = P (A  B) / P (B) if P (B)  0 </li></ul><ul><li>Bayes’ Theorem: </li></ul><ul><li>P (B | A) = P (A | B) P (B) / P (A) </li></ul><ul><li>Unconditional independence: </li></ul><ul><li>A and B are unconditional independent iff </li></ul><ul><li>P (A | B) = P (A) or </li></ul><ul><li>P (A | B) = P (B) or </li></ul><ul><li>P (A | B) = P (A) P (B) </li></ul><ul><li>Conditional independence: </li></ul><ul><li>A is conditional independent of B given C iff </li></ul><ul><li>P (A | B  C) = P (A | C) </li></ul>
  4. 4. Interpretations of probability <ul><li>Logical interpretation </li></ul><ul><ul><li>Probability is the ratio between favourable cases and equipossible cases </li></ul></ul><ul><li>Subjective interpretation </li></ul><ul><ul><li>Probability a quantitative expression of degree of knowledge, degree of belief, degree of confirmation </li></ul></ul><ul><li>Objective interpretation </li></ul><ul><ul><li>Probability is a quantitative expression of an objective feature of the world </li></ul></ul>Agent-dependent notion  Epistemological interpretations Agent-independent notion  Metaphysical interpretation
  5. 5. Dutch Book arguments <ul><li>Within subjective interpretation: probabilities are degrees of belief </li></ul><ul><li>Goal: justify 2 epistemological principles </li></ul><ul><ul><li>Probability laws are coherence conditions on degrees of belief </li></ul></ul><ul><ul><li>Conditionalization is a rule of probabilistic inference </li></ul></ul><ul><li>Assumption: degrees of belief are betting quotients </li></ul><ul><li>A Dutch Book is such that the bettor looses whatever happens </li></ul><ul><li>Synchronic Dutch Book theorem: the bettor is not liable to the Dutch Book iff his betting quotients satisfy probability axioms </li></ul><ul><li>Diachronic Dutch Book theorem: conditionalization is the only coherent dynamic rule for updating probabilities </li></ul>
  6. 6. Varieties of Bayesianism <ul><li>Subjective Bayesianism </li></ul><ul><li>coherence is the only constraint on probability functions </li></ul><ul><li>Objective Baysianism </li></ul><ul><li>knowledge and lack of knowledge are empirical and logical constraints on probability functions </li></ul>
  7. 7. Philosophy of causality: probability and causality <ul><li>Motivation for the probabilistic approach </li></ul><ul><li>Probabilistic theories of causality </li></ul><ul><li>vs. </li></ul><ul><li>Theories of probabilistic causality </li></ul>
  8. 8. Suppes: causal relations among events <ul><li>Causes precede effects in time by definition </li></ul><ul><li>Causes increase the probability of the effect: P(E | C) > P(E) </li></ul><ul><li>Genuine causes are not spurious </li></ul>
  9. 9. Suppes: causal relations among quantitative properties <ul><li>Restate former definitions in terms of random variables and probability distributions </li></ul><ul><li>Causation implies correlation </li></ul>
  10. 10. Traditional problems <ul><li>Improbable consequences </li></ul><ul><li>Levels of causation: </li></ul><ul><ul><li>type causation vs . token causation </li></ul></ul><ul><li>Negative causes </li></ul><ul><li>Deterministic causality vs. Indeterministic causality </li></ul>
  11. 11. My research project: some ideas in progress <ul><li>Causality: metaphysics, epistemology, or methodology? </li></ul><ul><li>Causal modelling: metaphysics, epistemology or methodology? </li></ul>
  12. 12. <ul><li>My project: </li></ul><ul><li>Is in the epistemology of causality </li></ul><ul><li>Attempts to extrapolate a notion of causality </li></ul><ul><li>My methodology: </li></ul><ul><li>Analysis of modelling </li></ul><ul><li>Analysis of case studies </li></ul>
  13. 13. Intermezzo: what is a causal model? <ul><li>Causal models have two parts: </li></ul><ul><li>A set of equations </li></ul><ul><li>A graph </li></ul><ul><li>Equations functionally relate variables </li></ul><ul><li>Graphs are a device for laying out pictorially what is hypothesized to cause what </li></ul>
  14. 14. Causal models: an example C 3 =  1 C 2 +  2 C 1 +  i Child mortality and mother’s education C 1 = mother’s edication C 2 = socioeconomic status C 3 = child mortality
  15. 15. Two claims about causality <ul><li>What is causality? </li></ul><ul><li>causality is a measure of change </li></ul><ul><li>Where does causality come from? </li></ul><ul><li>causality comes from the causal hypotheses </li></ul>
  16. 16. Related problems <ul><li>What about probability? </li></ul><ul><li>objective Bayesian approach </li></ul><ul><li>What about determinism? </li></ul><ul><li>determinism is a heuristic principle </li></ul>

×