Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Csf Russo Measuring Variations

560 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Csf Russo Measuring Variations

  1. 1. Measuring variations Causality and causal modelling in the social sciences Federica Russo Philosophy, Louvain & Kent
  2. 2. Overview <ul><li>Locate this work: </li></ul><ul><ul><li>Metaphysics, epistemology, </li></ul></ul><ul><ul><li>methodology of causality </li></ul></ul><ul><ul><li>Domain; interest; objective </li></ul></ul><ul><li>The guiding question </li></ul><ul><ul><li>Rationale (vs. definition) </li></ul></ul><ul><li>Methodology of research and </li></ul><ul><li>types of arguments </li></ul><ul><li>A taste of methodological arguments </li></ul><ul><ul><li>Structural equations </li></ul></ul><ul><li>A taste of possible objections </li></ul><ul><ul><li>Regularity; Invariance; Homogenous populations </li></ul></ul>
  3. 3. Philosophy of causality <ul><li>Metaphysics </li></ul><ul><ul><li>What causality/cause is </li></ul></ul><ul><li>Epistemology </li></ul><ul><ul><li>How do we know about causal relations </li></ul></ul><ul><li>Methodology </li></ul><ul><ul><li>Develop/implement methods </li></ul></ul><ul><ul><li>for discovery/confirmation of causal relations </li></ul></ul>
  4. 4. This work <ul><li>Epistemology of causality </li></ul><ul><li>Domain </li></ul><ul><ul><li>quantitative social science </li></ul></ul><ul><li>Interest </li></ul><ul><ul><li>causal reasoning in causal modelling </li></ul></ul><ul><li>Objective </li></ul><ul><ul><li>dig out a neglected notion </li></ul></ul><ul><ul><li>in the philosophy of causality: variation </li></ul></ul>
  5. 5. The guiding question <ul><li>When we reason about cause-effect </li></ul><ul><li>relations in causal modelling, </li></ul><ul><li>what notion guides this reasoning? </li></ul><ul><li>Regularity? Invariance? Production? ... </li></ul><ul><li>Hunting for a rationale </li></ul>
  6. 6. Rationale vs. definition <ul><li>Rationale: </li></ul><ul><ul><li>a principle/notion/concept underlying </li></ul></ul><ul><ul><li>decision/reasoning/modelling </li></ul></ul><ul><li>Definition: </li></ul><ul><ul><li>A description of a thing by means </li></ul></ul><ul><ul><li>of its properties or if its function </li></ul></ul><ul><li>Here: </li></ul><ul><ul><li>hunt for the notion underlying model building </li></ul></ul><ul><ul><li>and model testing: rationale, not definition </li></ul></ul>
  7. 7. Methodology of research <ul><li>Bottom-up rather than top-down </li></ul><ul><li>A philosophical investigation that </li></ul><ul><ul><li>starts from the scientific practice, </li></ul></ul><ul><ul><li>within the scientific practice raises </li></ul></ul><ul><ul><li>methodological and epistemological issues, </li></ul></ul><ul><ul><li>for the scientific practice points </li></ul></ul><ul><ul><li>to the path forward </li></ul></ul>
  8. 8. The answer <ul><li>Causal modelling is regimented by </li></ul><ul><li>a rationale of variation </li></ul>
  9. 9. Arguments <ul><li>Empirical: </li></ul><ul><ul><li>Look at informal reasoning in case studies </li></ul></ul><ul><li>Methodological: </li></ul><ul><ul><li>Look at rationale of model building & testing </li></ul></ul><ul><ul><li>in various causal models </li></ul></ul><ul><li>Philosophical: </li></ul><ul><ul><li>Look at arguments given by other philosophers </li></ul></ul><ul><li>Foundational: </li></ul><ul><ul><li>Look at forefathers of causal modelling </li></ul></ul><ul><li>Compatibility: </li></ul><ul><ul><li>Look at various established philosophical accounts </li></ul></ul>
  10. 10. A taste of methodological arguments <ul><li>Consider a structural equation </li></ul><ul><li>Y =  X+  </li></ul><ul><ul><li>Are there meaningful co-variations between X and Y? </li></ul></ul><ul><ul><li>Are those variations chancy or causal? </li></ul></ul><ul><ul><ul><li>hypothesis testing; invariance; exogeneity </li></ul></ul></ul>
  11. 11. Therefore… <ul><li>Variation is a pre condition </li></ul><ul><li>with respect to other notions </li></ul><ul><ul><li>E.g.: regularity, invariance </li></ul></ul><ul><li>Any role left to those? Yes – constraints : </li></ul><ul><ul><li>Regularity: often enough </li></ul></ul><ul><ul><li>Invariance: stability of parameters </li></ul></ul><ul><li>Rule out accidental and spurious variations, </li></ul><ul><li>Grant causal interpretation of variations </li></ul>
  12. 12. A taste of objections <ul><li>Regularity </li></ul><ul><ul><li>Mine is just a reformulation of regularity theory </li></ul></ul><ul><ul><ul><li>Only partly true </li></ul></ul></ul><ul><ul><li>Regularity is more basic. </li></ul></ul><ul><ul><ul><li>Not quite: regularity of what? </li></ul></ul></ul><ul><li>Invariance </li></ul><ul><ul><li>Invariance is more basic. </li></ul></ul><ul><ul><ul><li>Not quite: invariance of what? </li></ul></ul></ul><ul><li>Homogenous populations </li></ul><ul><ul><li>No variations in homogenous populations. </li></ul></ul><ul><ul><ul><li>That’s the point: to make variations emerge </li></ul></ul></ul>
  13. 13. Want to know more?

×