Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Multi-objective evolutionary algorithms (MOEAs) help software engineers find novel solutions to complex problems. When automatic tools explore too many options, they are slow to use and hard to comprehend. GALE is a near-linear time MOEA that builds a piecewise approximation to the surface of best solutions along the Pareto frontier. For each piece, GALE mutates solutions towards the better end. In numerous case studies, GALE finds comparable solutions to standard methods (NSGA-II, SPEA2) using far fewer evaluations (e.g. 20 evaluations, not 1,000). GALE is recommended when a model is expensive to evaluate, or when some audience needs to browse and understand how an MOEA has made its conclusions.