Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
How to scale recommendations to extremely large scale using Apache Flink. We use matrix factorization to calculate a latent factor model which can be used for collaborative filtering. The implemented alternating least squares algorithm is able to deal with data sizes on the scale of Netflix.
Login to see the comments