1) Pengertian/defenisi Himpunan (set)

•    Himpunan (set) adalah kumpulan objek-objek yang berbeda.

•    Objek di dalam ...
b. Simbol-simbol Baku

         P=     himpunan bilangan bulat positif = { 1, 2, 3, ... }
         N=     himpunan bilanga...
3) Kardinalitas
•   Jumlah elemen di dalam A disebut kardinal dari himpunan A.
•   Notasi: n(A) atau A 

Contoh :
(i) B ...
Contoh :
(i) { 1, 2, 3} ⊆ {1, 2, 3, 4, 5}
(ii) {1, 2, 3} ⊆ {1, 2, 3}
(iii) N ⊆ Z ⊆ R ⊆ C
(iv) Jika A = { (x, y) | x + y < ...
Contoh :

(i) Jika A = { 0, 1 } dan B = { x | x (x – 1) = 0 }, maka A = B
(ii) Jika A = { 3, 5, 8, 5 } dan B = {5, 3, 8 },...
U


                                             A             B




Contoh:
Jika A = { x | x ∈ P, x < 8 } dan B = { 10, 2...
Contoh :

(i)          Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18},
      maka A ∩ B = {4, 10}
(ii) Jika A = { 3, 5,...
Contoh 1:

Misalkan U = { 1, 2, 3, ..., 9 },
(i)    jika A = {1, 3, 7, 9}, maka        A = {2, 4, 6, 8}
(ii)        jika A...
Contoh :

(i) Jika A = { 1, 2, 3, ..., 10 } dan B = { 2, 4, 6, 8, 10 }, maka A – B = { 1, 3, 5, 7, 9 } dan B – A
      =∅
...
Catatan:
1. Jika A dan B merupakan himpunan berhingga, maka: A × B = A . B.
2. Pasangan berurutan (a, b) berbeda den...
TUGAS MATEMATIKA




           DISUSUN OLEH :

              KELAS II.D




Jurusan Teknik Komputer dan Jaringan
    Poli...
1. Tugas ini adalah tugas bersama satu kelas (silahkan bagi tugas
   sedemikian sehingga dapat diselesaikan dengan baik.
2...
Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 1
MAKALAH
PENERAPAN MODEL PEMBELAJARAN DALAM PENGAJARAN
MATEMATIKA
Disusun Ole...
Langkah-langkah :
1. Guru mempersiapkan gambar-gambar sesuai dengan tujuan pembelajaran
2. Guru menempelkan gambar di papa...
nomor
2. Penugasan diberikan kepada setiap siswa berdasarkan nomorkan terhadap tugas
yang berangkai
Misalnya : siswa nomor...
notasi himpunan. A = {x│x ≤ 5, x bilangan asli} 3) Kalimat Himpunan A adalah himpunan
bilangan asli yang kurang dari sama ...
b. Apakah himpunan sungai Musi, sungai Barito, sungai Kampar juga termasuk ke dalam
himpunan sungai yang ada di Indonesia ...
2. C = {2,4,,6, …} D = {1,3,5, …} Adakah anggota C dan D yang sama ? jika ada, datalah
anggotanya !
3. X = {a,b,c,d,f,I,j,...
Indikator No. 18 Menyajikan gabungan dua himpunan dengan diagram venn Petunjuk :
Setelah kalian memahami daerah irisan dua...
diagram venn Soal : 1. Dari 25 anak diantaranya 14 anak gemar IPA, 11 anak gemar
Matematika, dan 5 anak gemar kedua-duanya...
Upcoming SlideShare
Loading in …5
×

Soal himpunn

43,791 views

Published on

3 Comments
4 Likes
Statistics
Notes
No Downloads
Views
Total views
43,791
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
914
Comments
3
Likes
4
Embeds 0
No embeds

No notes for slide

Soal himpunn

  1. 1. 1) Pengertian/defenisi Himpunan (set) • Himpunan (set) adalah kumpulan objek-objek yang berbeda. • Objek di dalam himpunan disebut elemen, unsur, atau anggota. 2) Cara Penyajian Himpunan a. Enumerasi Contoh 1: - Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}. - Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}. - C = {kucing, a, Amir, 10, paku} - R = { a, b, {a, b, c}, {a, c} } - C = {a, {a}, {{a}} } - K = { {} } - Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 } - Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}. Keanggotaan x ∈ A : x merupakan anggota himpunan A; x ∉ A : x bukan merupakan anggota himpunan A. Contoh 2: Misalkan: A = {1, 2, 3, 4}, R = { a, b, {a, b, c}, {a, c} } K = {{}} maka 3 ∈ A 5 ∉ B {a, b, c} ∈ R c∉R {} ∈ K {} ∉ R Contoh 3. Bila P1 = {a, b}, P2 = { {a, b} }, P3 = {{{a, b}}}, maka a ∈ P1 a ∉ P2 P1 ∈ P2 P1 ∉ P3 P2 ∈ P3
  2. 2. b. Simbol-simbol Baku P= himpunan bilangan bulat positif = { 1, 2, 3, ... } N= himpunan bilangan alami (natural) = { 1, 2, ... } Z= himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... } Q= himpunan bilangan rasional R= himpunan bilangan riil C= himpunan bilangan kompleks • Himpunan yang universal: semesta, disimbolkan dengan U. Contoh: Misalkan U = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari U, dengan A = {1, 3, 5}. c. Notasi Pembentuk Himpunan Notasi: { x  syarat yang harus dipenuhi oleh x } Contoh 1. (i) A adalah himpunan bilangan bulat positif yang kecil dari 5 A = { x | x adalah bilangan bulat positif lebih kecil dari 5} atau A = { x | x ∈ P, x < 5 } yang ekivalen dengan A = {1, 2, 3, 4} (ii) M = { x | x adalah mahasiswa yang mengambil kuliah IF2151} d. Diagram Venn Contoh 2. Misalkan U = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn: U A B 7 1 2 8 5 4 3 6
  3. 3. 3) Kardinalitas • Jumlah elemen di dalam A disebut kardinal dari himpunan A. • Notasi: n(A) atau A  Contoh : (i) B = { x | x merupakan bilangan prima yang lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 (ii) T = {kucing, a, Amir, 10, paku}, maka T = 5 (iii) A = {a, {a}, {{a}} }, maka A = 3 4) Himpunan Kosong • Himpunan dengan kardinal = 0 disebut himpunan kosong (null set). • Notasi : ∅ atau {} Contoh : (i) E = { x | x < x }, maka n(E) = 0 (ii) P = { orang Indonesia yang pernah ke bulan }, maka n(P) = 0 (iii) A = {x | x adalah akar persamaan kuadrat x2 + 1 = 0 }, n(A) = 0 • himpunan {{ }} dapat juga ditulis sebagai {∅} • himpunan {{ }, {{ }}} dapat juga ditulis sebagai {∅, {∅}} • {∅} bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong. 5) Himpunan Bagian (Subset) • Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B. • Dalam hal ini, B dikatakan superset dari A. • Notasi: A ⊆ B • Diagram Venn: U B A
  4. 4. Contoh : (i) { 1, 2, 3} ⊆ {1, 2, 3, 4, 5} (ii) {1, 2, 3} ⊆ {1, 2, 3} (iii) N ⊆ Z ⊆ R ⊆ C (iv) Jika A = { (x, y) | x + y < 4, x ≥, y ≥ 0 } dan B = { (x, y) | 2x + y < 4, x ≥ 0 dan y ≥ 0 }, maka B ⊆ A. TEOREMA 1. Untuk sembarang himpunan A berlaku hal-hal sebagai berikut: (a) A adalah himpunan bagian dari A itu sendiri (yaitu, A ⊆ A). (b) Himpunan kosong merupakan himpunan bagian dari A ( ∅ ⊆ A). (c) Jika A ⊆ B dan B ⊆ C, maka A ⊆ C • ∅ ⊆ A dan A ⊆ A, maka ∅ dan A disebut himpunan bagian tak sebenarnya (improper subset) dari himpunan A. Contoh: A = {1, 2, 3}, maka {1, 2, 3} dan ∅ adalah improper subset dari A. • A ⊆ B berbeda dengan A ⊂ B (i) A ⊂ B : A adalah himpunan bagian dari B tetapi A ≠ B. A adalah himpunan bagian sebenarnya (proper subset) dari B. Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3} (ii) A ⊆ B : digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B. 6) Himpunan yang Sama • A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A. • A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka A ≠ B. • Notasi : A = B ↔ A ⊆ B dan B ⊆ A
  5. 5. Contoh : (i) Jika A = { 0, 1 } dan B = { x | x (x – 1) = 0 }, maka A = B (ii) Jika A = { 3, 5, 8, 5 } dan B = {5, 3, 8 }, maka A = B (iii) Jika A = { 3, 5, 8, 5 } dan B = {3, 8}, maka A ≠ B Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut: (a) A = A, B = B, dan C = C (b) jika A = B, maka B = A (c) jika A = B dan B = C, maka A = C 7) Himpunan yang Ekivalen • Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama. • Notasi : A ~ B ↔ A = B Contoh : Misalkan A = { 1, 3, 5, 7 } dan B = { a, b, c, d }, maka A ~ B sebab A = B = 4 8) Himpunan Saling Lepas • Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama. • Notasi : A // B • Diagram Venn:
  6. 6. U A B Contoh: Jika A = { x | x ∈ P, x < 8 } dan B = { 10, 20, 30, ... }, maka A // B. 9) Himpunan Kuasa • Himpunan Kuasa (Power set ) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A.termasuk himpunan kosong dan himpunan A • Notasi : P(A) atau 2A • Jika A = m, maka P(A) = 2m. Contoh 1: Jika A = { 1, 2 }, maka P(A) = { ∅, { 1 }, { 2 }, { 1, 2 }} Contoh 2: Himpunan kuasa dari himpunan kosong adalah P(∅) = {∅}, dan himpunan kuasa dari himpunan {∅} adalah P({∅}) = {∅, {∅}}. 10) Operasi Terhadap Himpunan a. Irisan (intersection) • Notasi : A ∩ B = { x | x ∈ A dan x ∈ B }
  7. 7. Contoh : (i) Jika A = {2, 4, 6, 8, 10} dan B = {4, 10, 14, 18}, maka A ∩ B = {4, 10} (ii) Jika A = { 3, 5, 9 } dan B = { -2, 6 }, maka A ∩ B = ∅. Artinya: A // B b. Gabungan (union) • Notasi : A ∪ B = { x | x ∈ A atau x ∈ B } Contoh : (i) Jika A = { 2, 5, 8 } dan B = { 7, 5, 22 }, maka A ∪ B = { 2, 5, 7, 8, 22 } (ii) A ∪ ∅ = A c. Komplemen (complement) • Notasi : A = { x | x ∈ U, x ∉ A }
  8. 8. Contoh 1: Misalkan U = { 1, 2, 3, ..., 9 }, (i) jika A = {1, 3, 7, 9}, maka A = {2, 4, 6, 8} (ii) jika A = { x | x/2 ∈ P, x < 9 }, maka A = { 1, 3, 5, 7, 9 } Contoh 2 : Misalkan; A = himpunan semua mobil buatan dalam negeri B = himpunan semua mobil impor C = himpunan semua mobil yang dibuat sebelum tahun 1990 D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta E = himpunan semua mobil milik mahasiswa universitas tertentu (i) “mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri”  (E ∩ A) ∪ (E ∩ B) atau E ∩ (A ∪ B) (ii) “semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta”  A ∩ C ∩ D (iii) “semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta”  C ∩ D ∩ B d. Selisih (difference) • Notasi : A – B = { x | x ∈ A dan x ∉ B } = A ∩ B
  9. 9. Contoh : (i) Jika A = { 1, 2, 3, ..., 10 } dan B = { 2, 4, 6, 8, 10 }, maka A – B = { 1, 3, 5, 7, 9 } dan B – A =∅ (ii) {1, 3, 5} – {1, 2, 3} = {5}, tetapi {1, 2, 3} – {1, 3, 5} = {2} e. Beda Setangkup (Symmetric Difference) • Notasi: A ⊕ B = (A ∪ B) – (A ∩ B) = (A – B) ∪ (B – A) Contoh 1: Jika A = { 2, 4, 6 } dan B = { 2, 3, 5 }, maka A ⊕ B = { 3, 4, 5, 6 } Contoh 2 : Misalkan; U = himpunan mahasiswa P = himpunan mahasiswa yang nilai ujian UTS di atas 80 Q = himpunan mahasiswa yang nilain ujian UAS di atas 80 Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80. (i) “Semua mahasiswa yang mendapat nilai A” : P ∩ Q (ii) “Semua mahasiswa yang mendapat nilai B” : P ⊕ Q (iii) “Ssemua mahasiswa yang mendapat nilai C” : U – (P ∪ Q) TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut: (a) A ⊕ B = B ⊕ A (hukum komutatif) (b) (A ⊕ B ) ⊕ C = A ⊕ (B ⊕ C ) (hukum asosiatif) f. Perkalian Kartesian (cartesian product) • Notasi: A × B = {(a, b)  a ∈ A dan b ∈ B } Contoh 1: (i) Misalkan C = { 1, 2, 3 }, dan D = { a, b }, maka C × D = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) } (ii) Misalkan A = B = himpunan semua bilangan riil, maka A × B = himpunan semua titik di bidang datar
  10. 10. Catatan: 1. Jika A dan B merupakan himpunan berhingga, maka: A × B = A . B. 2. Pasangan berurutan (a, b) berbeda dengan (b, a), dengan kata lain (a, b) ≠ (b, a). 3. Perkalian kartesian tidak komutatif, yaitu A × B ≠ B × A dengan syarat A atau B tidak kosong. Pada Contoh 20(i) di atas, D × C = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) } ≠ C × D. 4. Jika A = ∅ atau B = ∅, maka A × B = B × A = ∅ Contoh 2 : Misalkan; A = himpunan makanan = { s = soto, g = gado-gado, n = nasi goreng, m = mie rebus } B = himpunan minuman = { c = coca-cola, t = teh, d = es dawet } Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas? Jawab: A × B = A⋅B = 4 ⋅ 3 = 12 kombinasi dan minuman, yaitu {(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)}. Contoh 3: Daftarkan semua anggota himpunan berikut: (a) P(∅) (b) ∅ × P(∅) (c) {∅}× P(∅) (d) P(P({3})) Penyelesaian: (a) P(∅) = {∅} (b) ∅ × P(∅) = ∅ (ket: jika A = ∅ atau B = ∅ maka A × B = ∅) (c) {∅}× P(∅) = {∅}× {∅} = {(∅,∅)) P(P({3})) = P({ ∅, {3} }) = {∅, {∅}, {{3}}, {∅, {3}} }
  11. 11. TUGAS MATEMATIKA DISUSUN OLEH : KELAS II.D Jurusan Teknik Komputer dan Jaringan Politeknik Negeri Ujung Pandang Tugas matematika D3TKJ
  12. 12. 1. Tugas ini adalah tugas bersama satu kelas (silahkan bagi tugas sedemikian sehingga dapat diselesaikan dengan baik. 2. Tugas 1 tentang himpunan sebagai mid test 3. Tugas 3 tentang relasi dan fungsi sebagai final test 4. Buatlah rangkuman materi dari tiga pokok bahasan (Himpunan,relasi dan fungsi) meliputi : Tugas 1 :Himpunan 1. Defenisi Himpunan 2. Penyajian Himpunan 3. Kardinalitas 4. Himpunan kosong 5. Himpunan bagian 6. Himpunan yang sama 7. Himpunan yang ekivalen 8. Himpunan saling lepas 9. Himpunan kuasa 10.Operasi Himpunan (irisan,gabungan,komplemen,selisih,beda setangkup,perkalian kertesian) Tugas 2 :Relasi dan fungsi 1. Defenisi Relasi 2. Representasi relasi 3. Relasi inverse 4. Mengombinasi relasi 5. Komposisi Relasi 6. Sifat-sifat relasi 7. Relasi kesetaraan 8. Relasi pengurutan parsial 9. Klosur relasi 10.Relasi n-ary Fungsi : 1. Defenisi Fungsi 2. Funsi Inversi 3. Komposisi Fungsi 4. Beberapa fungsi khusus 5. Fungsi Rekursif
  13. 13. Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 1 MAKALAH PENERAPAN MODEL PEMBELAJARAN DALAM PENGAJARAN MATEMATIKA Disusun Oleh : Subarsis, .S.Pd Asal Sekolah : SMP Negeri 7 Selat Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 2 PENERAPAN MODEL PEMBELAJARAN DALAM PENGAJARAN MATEMATIKA SMP Pendahuluan Upaya peningkatan mutu pendidikan di Indonesia, khususnya peningkatan mutu pendidikan Matematika masih terus diupayakan, karena sangat diyakini bahwa Matematika merupakan induk dari Ilmu Pengetahuan. Dalam berbagai diskusi pendidikan di Indonesia salah satu sorotan adalah mutu pendidikan yang dinyatakan rendah bila dibandingkan dengan mutu pendidikan negara lain. Salah satu indikator adalah mutu pendidikan matematika yang disinyalir telah tergolong memprihatinkan yang ditandai dengan rendahnya nilai rata-rata matematika siswa di sekolah yang masih jauh lebih rendah dibandingkan dengan nilai pelajaran lainnya. Bahkan banyak diperbincangkan tentang nilai ujian akhir nasional (UAN) bidang studi matematika yang cenderung rendah dibandingkan dengan bidang studi lainnya.Sudah sering dikemukan oleh tokoh-tokoh pendidikan baik dalam media massa maupun dalam penelitian. Namun bukan hanya dari UAN yang menunjukan bahwa nilai bidang studi matematika cenderung rendah dibandingkan dengan bidang studi lainnya, salah satunya adalah hasil olimpiade matematika SMP tingkat nasional menunjukan bahwa bidang studi matematika cenderung rendah. Hal ini disebabkan lemahnya pemahaman konsep dasar Matematika siswa dan siswa belum bisa memhami formulasi, generalisasi dan konteks kehidupan nyata dengan ilmu matematika. Bahkan diperoleh keterangan 80% dari peserta memiliki penguasaan konsep dasar matematika yang sangat rendah. Dalam upaya meningkan kualitas, maka diperlukan berbagai terobosan baik dalam pengembangan kurikulum, inovasi pembelajaran dan pemenuhan sarana dan prasarana pendidikan. Untuk meningkatan prestasi belajar siswa maka guru dituntut untuk membuat pembelajaran menjadi lebih inovatif yang mendorong siswa dapat belajar secara optimal baik di dalam belajar mandiri maupun di dalam pembelajaran di kelas. Inovasi-inovasi model pembelajaran sangat diperlukan dan sangat mendesak terutama dalam menghasilkan model pembelajaran baru yang dapat memberikan hasil belajar yang baik. Agar pembelajaran lebih optimal maka guru diharapkan mampu Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 3 meneerpkan model-model pembelajaran yang variatif, efektif dan selektif sesuai dengan standar kompetensi dan kompetensi dasar yang diajarkan. Dalam hal peningkatan mutu pendidikan, guru juga ikut memegang peranan penting dalam peningkatan kualitas siswa dalam belajar matematika dan guru harus benar-benar memperhatikan, memikirkan dan sekaligus merecanakan proses belajar mengajar yang menarik bagi siswa, agar siswa berminat dan semangant belajar dan mau terlibat dalam proses belajar mengajar, sehingga pengajaran tersebut menjadi efektif ( Slameto, 1987). Untuk dapat mengajar dengan efektif seseorang guru harus banyak menggunakan metode dan model-model pembelajaran yang variatif. Berikut ini berbagai model-model Pembelajaran 1. Examples non examples
  14. 14. Langkah-langkah : 1. Guru mempersiapkan gambar-gambar sesuai dengan tujuan pembelajaran 2. Guru menempelkan gambar di papan atau ditayangkan melalui OHP 3. Guru memberi petunjuk dan memberi kesempatan pada siswa untuk memperhatikan/menganalisa gambar 4. Melalui diskusi kelompok 2-3 orang siswa, hasil diskusi dari analisa gambar tersebut dicatat pada kertas 5. Tiap kelompok diberi kesempatan membacakan hasil diskusinya 6. Mulai dari komentar/hasil diskusi siswa, guru mulai menjelaskan materi sesuai tujuan yang ingin dicapai 7. Kesimpulan 2. Picture and Picture Langkah-langkah : 1. Guru menyampaikan kompetensi yang ingin dicapai 2. Menyajikan materi sebagai pengantar 3. Guru menunjukkan/memperlihatkan gambar-gambar kegiatan berkaitan dengan materi 4. Guru menunjuk/memanggil siswa secara bergantian memasang/mengurutkan gambar-gambar menjadi urutan yang logis Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 4 5. Guru menanyakan alasan/dasar pemikiran urutan gambar tersebut 6. Dari alasan/urutan gambar tersebut guru memulai menamkan konsep/materi sesuai dengan kompetensi yang ingin dicapai 7. Kesimpulan/rangkuman 3. Numbered Heads Together Langkah-langkah : 1. Siswa dibagi dalam kelompok, setiap siswa dalam setiap kelompok mendapat nomor 2. Guru memberikan tugas dan masing-masing kelompok mengerjakannya 3. Kelompok mendiskusikan jawaban yang benar dan memastikan tiap anggota kelompok dapat mengerjakannya/mengetahui jawabannya 4. Guru memanggil salah satu nomor siswa dengan nomor yang dipanggil melaporkan hasil kerjasama mereka 5. Tanggapan dari teman yang lain, kemudian guru menunjuk nomor yang lain 6. Kesimpulan 4. Cooperative Script(DANSEREAU CS., 1985) Skrip kooperatif : metode belajar dimana siswa bekerja berpasangan dan bergantian secara lisan mengikhtisarkan, bagian-bagian dari materi yang dipelajari Langkah-langkah : 1. Guru membagi siswa untuk berpasangan 2. Guru membagikan wacana/materi tiap siswa untuk dibaca dan membuat ringkasan 3. Guru dan siswa menetapkan siapa yang pertama berperan sebagai pembicara dan siapa yang berperan sebagai pendengar 5. Kepala Bernomor Struktur Langkah-langkah : Makalah : Subarsis,S.Pd. SMP Negeri 7 Selat 5 1. Siswa dibagi dalam kelompok, setiap siswa dalam setiap kelompok mendapat
  15. 15. nomor 2. Penugasan diberikan kepada setiap siswa berdasarkan nomorkan terhadap tugas yang berangkai Misalnya : siswa nomor satu bertugas mencatat soal. Siswa nomor dua mengerjakan soal dan siswa nomor tiga melaporkan hasil pekerjaan dan seterusnya 3. Jika perlu, guru bisa menyuruh kerja sama antar kelompok. Siswa disuruh keluar dari kelompoknya dan bergabung bersama beberapa siswa bernomor sama dari kelompok lain. Dalam kesempatan ini siswa dengan tugas yang sama bisa saling membantu atau mencocokkan hasil kerja sama mereka 4. Laporkan hasil dan tanggapan dari kelompok yang lain 5. Kesimpulan MATEMATIKA PROGRAM PASCASARJANA UNIVERSITAS SRIWIJAYA 2006 / 2007 Design by Destiniar, Marini, and Win 1 Sekolah : SMP Kelas : VII Mata Pelajaran : Matematika Semester : II (Dua) Standar Kompetensi 4. Menggunakan Konsep himpunan dan diagram venn dalam pemecahan masalah. Kompetensi Dasar 4.1 Memahami pengertian dan notasi himpunan, serta penyajiannya. Indikator No. 1 Menyatakan masalah sehari-hari dalam bentuk himpunan dan mendata anggotanya. Soal : 1. Sebutkan benda-benda yang ada di dalam kelas ? 2. Sebutkan benda-benda di dalam kelasmu yang terbuat dari kayu 3. Sebutkan nama-nama teman di kelasmu yang berkaca mata ? 4. Sebutkan nama-nama penyanyi yang kamu ketahui ? 5. Sebutkan merek-merek Hp yang kamu ketahui ? 6. Apakah menurut kamu harga sebuah Hp itu mahal? 7. Apakah menurut kamu pelajaran matematika itu sulit ? Dari uraian diatas, simpulkan bahwa : Himpunan adalah Design by Destiniar, Marini, and Win 3 Indikator No. 2 Menyebutkan anggota himpunan Soal :1. Sebutkan anggota himpunan benda-benda di dalam kelasmu yang terbuat dari kayu ? 2. Sebutkan nama-nama siswa laki-laki yang ada dikelasmu ? 3.Sebutkan anggota himpunan bilangan genap < 14 ? 4. Sebutkan anggota himpunan bilangan prima ≤ 11 ? 5. Sebutkan anggota himpunan bilangan asli yang habis dibagi 3 < 20 ? Indikator No. 3 Menyebutkan bukan anggota himpunan Soal : 1. Didalam kelasmu ada himpunan siswa yang umurnya ≤ 12 tahun, sebutkan yang bukan merupakan anggota himpunan siswa yang umurnya ≤ 12 tahun ? Design by Destiniar, Marini, and Win 4 2. Apakah 1 anggota himpunan bilangan genap ? berikan alasan ! 3. Sebutkan tiga bilangan yang bukan anggota himpunan bilangan genap ? 4. Sebutkan 10 bilangan yang bukan himpunan bilangan prima ? 5. Sebutkan bilangan yang bukan anggota bilangan bulat ? Indikator No. 4 Menyatakan notasi himpunan Informasi : Himpunan bilangan asli ≤ 5 dapat dinyatakan dengan : 1) Mendaftar semua anggotanya. A = {1,2,3,4,5} 2) Menggunakan
  16. 16. notasi himpunan. A = {x│x ≤ 5, x bilangan asli} 3) Kalimat Himpunan A adalah himpunan bilangan asli yang kurang dari sama dengan 5. Soal : 1. Nyatakanlah dengan mendaftar semua anggotanya. a) Himpunan buah-buahan yang berwarna merah b) Himpunan bilangan prima antara 10 dan 20 c) Himpunan bilangan bulat dari -4 sampai dengan 4. 2. Nyatakanlah dengan menggunakan notasi himpunan. a) Himpunan bilangan genap antara 2 dan 12 b) Himpunan bilangan prima pertama yang kurang dari 17. c) Himpunan bilangan asli antara 5 dan 15. 3. Nyatakanlah dengan menggunakan kalimat. a) {2,4,6,8,10,12} b) {101,103,107,109} c) {-2,-1,0,1,2,3,4,5} Indikator No. 5 Mengenal himpunan kosong. Soal : 1. Sebutkan siswa-siswa dikelasmu yang usianya 20 tahun ? 2. Sebutkan himpunan bilangan ganjil yang habis dibagi 2 ? 3. Sebutkan bilangan yang merupakan bilangan ganjil sekaligus bilangan genap ? 4. Sebutkan nama-nama bulan yang jumlah harinya ≥ 32 ? 5. Sebutkan bilangan prima yang lebih dari 2 dan habis dibagi 2? Indikator No. 6 Mengenal notasi himpunan kosong. Tuliskan dengan cara mendaftar semua anggotanya dari himpunan di bawah ini : 1. Nama-nama siswa di kelas ini yang umurnya sama dengan ibu / bapak ? 2. Bilangan asli yang kurang dari 1? 3. Bilangan ganjil yang habis dibagi 2 ? 4. Bilangan prima yang mempunyai 3 faktor ? Kesimpulan : Notasi untuk himpunan kosong adalah Untuk menuliskan notasi anggota himpunan adalah dengan “ ∈ ”, sedangkan notasi untuk bukan anggota himpunan adalah “∉” Contoh : 1. B adalah himpunan bilangan genap ≤ 10 Tuliskan dengan notasi anggota atau bukan anggota himpunan B dari soal berikut : 1) 1 … B 3) 5 … B 2) 2 … B 4) 10 … B 2. Tuliskan dengan notasi anggota atau bukan anggota himpunan S dari soal berikut : S = {x│1 < x ≤ 15, x himpunan bilangan asli} 1) 1 … S 5) 15 … S 2) 4 … S 6) 40 … S 3) 11 … S 7) 10 … S 4) 20 … S 8) 16 … S Indikator No. 8 Menuliskan himpunan berhingga dan tak berhingga Soal : Daftarkanlah semua anggota 1) Himpunan bilangan kuadrat yang kurang dari 100 2) Himpunan bilangan prima antara 10 dan 20 3) Himpunan bilangan asli 4) Himpunan bilangan genap 5) Himpunan bilangan ganjil Dari apa yang telah kamu tuliskan diatas dapatkah kamu menyimpulkan bahwa : Himpunan berhingga adalah Indikator No. 9 Menentukan himpunan bagian suatu himpunan 1. a. Sebutkan nama-nama bulan dalam satu tahun ? b. Sebutkan pula nama-nama hari dalam satu minggu ? Adakah hubungan antara pertanyaan a dan b ? Jelaskan ! 2. a. Sebutkan nama-nama sungai yang ada di Indonesia ?
  17. 17. b. Apakah himpunan sungai Musi, sungai Barito, sungai Kampar juga termasuk ke dalam himpunan sungai yang ada di Indonesia ? Adakah hubungan antara pertanyaan a dan b ? Jelaskan ! 3. a. Sebutkan nama-nama benua yang ada di dunia ? b. Apakah himpunan benua Afrika, dan benua Eropa termasuk ke dalam himpunan benua yang ada di dunia ? Adakah hubungan antara pertanyaan a dan b ? Jelaskan ! 4. a. A = {x │ x < 12, x bilangan asli} b. B = {3,4,5} Adakah hubungan antara himpunan A dan B? Jelaskan ! 5. a. H = { x │ 2 < x ≤ 15, x bilangan prima} b. K = {7,11,13} Adakah hubungan antara himpunan H dan K? Jelaskan ! Dari jawaban yang kalian berikan, kesimpulan yang kalian dapat adalah : Indikator No. 10 Menentukan banyak himpunan bagian suatu himpunan, Soal : 1. Diketahui X = {1,2,3} a) Apakah {1} merupakan himpunan …………... dari X b) Apakah {2} merupakan himpunan ……………dari X c) Apakah {1,2} merupakan himpunan ………… dari X d) Apakah { } merupakan himpunan …………... dari X 1) Coba kalian simpulkan dari jawaban tersebut ! 2) Berapa banyak himpunan yang dapat dibuat dari himpunan X yang anggotanya 2 ? 2. Diketahui : Y = {2,5,10} a) Berdasarkan soal no. 1, cobalah kalian buat himpunan baru yang dapat dibuat dari himpunan Y ? b) Berapa banyak himpunan baru yang terbentuk dari himpunan Y ? 3. Diketahui : Z = { 4,8,12,16} a) Buatlah himpunan baru yang dapat dibuat dari himpunan Z ? b) Berapa banyak himpunan baru yang terbentuk dari himpunan Z ? Indikator No. 11 Mengenal pengertian himpunan semesta Soal : 1. Himpunan S = Kumpulan tumbuh-tumbuhan a) Himpunan K = {bayam, kangkung, wortel, kentang, …} Apakah himpunan K termasuk ke dalam himpunan S ? 13 b) Himpunan L = {pohon jati, pohon mahoni, pohon bakau, pohon teh, …} Apakah himpunan L termasuk ke dalam himpunan S ? c) Himpunan M = {mangga, jeruk, apel, manggis, …} Apakah himpunan M termasuk ke dalam himpunan S ? 2. S = {1,2,3,4,…} a) A = {1,3,5,…} Apakah anggota himpunan A juga merupakan anggota himpunan S ? b) B = {2,4,6,…} Apakah anggota himpunan B juga merupakan anggota himpunan S ? c) C = {2,3,5,7,11,…} Apakah anggota himpunan C juga merupakan anggota himpunan S ? Jadi, Himpunan S adalah Indikator No. 12 Menyebutkan anggota himpunan semesta Soal : 1. A adalah himpunan manusia B adalah himpunan tumbuh-tumbuhan C adalah himpunan hewan Himpunan S dari himpunan A,B, dan C adalah : P = {0} Q = {1,2,3,4,…} R = {-1,-2,-3,-4,…} Himpunan S dari himpunan P,Q ,dan R adalah : 3. K = {1,2,3,4,…} L = {1/2,1/3,2/5,3/7,…} M = {0,-1,-2,-3,…} Himpunan S dari himpunan K,L, dan M adalah : himpunan Indikator No.13 Menjelaskan pengertian irisan dua himpunan Soal : 1. A = {4,6,7,10,12,13,14} B = {1,2,3,4,5,6,7,8} Apakah ada anggota himpunan A dan B yang sama ? Jika ya, datalah anggotanya !
  18. 18. 2. C = {2,4,,6, …} D = {1,3,5, …} Adakah anggota C dan D yang sama ? jika ada, datalah anggotanya ! 3. X = {a,b,c,d,f,I,j,o} Y = {a,c,e,g,h,I,k,m,o,q} Adakah anggota X dan Y yang sama ? jika ada, datalah anggotanya ! 4. K = Himpunan bilangan bulat yang dikuadratkan ≤ 100 L = {4,8,12,16,20,24,28,32,36,40} Adakah anggota K dan L yang sama ? jika ada, datalah anggotanya ! Dari uraian di atas apa yang dapat kamu simpulkan tentang dua buah himpunan. Kesimpulan : Indikator No. 14 Menjelaskan pengertian gabungan dua himpunan Soal : 1. A = {4,6,7,10,12,13,14} B = {1,2,3,4,5,6,7,8} Coba kamu gabungkan semua anggota A dan anggota B, dengan cara mendata ? 2. C = {2,4,6, ...} D = {1,3,5, ...} Adakah anggota himpunan A dan B yang sama ? jika ada, datalah anggotanya. 3. X = {a,b,c,d,f,i,q,o} Y = {a,c,e,g,i,k,m,o,q) Adakah anggota X dan Y yang sama, jika ada, datalah anggotanya ? 4. K = himpunan bilangan bulat yang dikuadratkan ≤ 100 L = {4,8,12,16,20,24,28,32,36,40} Adakah anggota K dan L yang sama, jika ada, datalah anggotanya ? Indikator No. 15 Menjelaskan kurang suatu himpunan dari himpunan lainnya. Informasi : Selisih himpunan-himpunan A dan B atau disebutnya himpunan A kurang himpunan B adalah himpunan dari elemen-elemen yang termasuk A tetapi tidak termasuk B. Kita nyatakan dengan : A - B Soal : 1. Diketahui : A = {a,b,c,d} B = {f,b,d,g} Maka A – B adalah .. 2. Ditentukan : S = {4,6,8,10,12,15} T = {1,2,8,12,16,17} Maka S – T adalah 3. Diketahui : K = {2,3,5,7,11,13,17,19} L = {2,5,8,11,14,17,20,23,26} Maka K – L adalah 4. Ditentukan X = {10,20,30,40,50,60,70,80,90,100} Y = {25, 50,75,100,125,150,175,200} Maka X – Y adalah Indikator No. 16 Menjelaskan komplemen dari suatu himpunan Informasi : Komplemen dari sebuah himpunan A adalah himpunan dari elemen-elemen yang tidak termasuk A. 1. Himpunan S = {1,2,3, ... , 10} Himpunan A = {2,3,4} Tentukan komplemen A ? 2. Himpunan S adalah himpunan bilangan prima antara 15 dan 40 Himpunan L beranggotakan {19,29} Tentukan komplemen L ? 3. S = {2,4,6, ... , 20} Y = {10,12,14} Tentukan komplemen Y ? Indikator No. 17 Menyajikan irisan dua himpunan dengan diagram venn Petunjuk : Diketahui R = {a,b,c,d} dan T = {b,d,f,g} • Langkah pertama Masukanlah semua anggota R dan T sesuai daerah yang tepat pada gambar berikut : S R T • Langkah kedua Arsirlah daerah yang merupakan irisan S dan T • Langkah ketiga Daftarlah anggota S ∩ T Berdasarkan petunjuk diatas, kerjakanlah soal-soal berikut : 1. A = {Andi, Amir, Beni, Badu, Cici, dan Dewi} B = {Beni, Cici, Umar} a) Gambarkan diagram venn b) Arsirlah daerah A ∩ B 2. C = {Mawar, Melati, Anggrek, Asoka, Kembang Sepatu} D = {Bakung, Suplir, Asoka, Kenanga} Design by Destiniar, Marini, and Win 20 a) Gambarkan diagram venn b) Arsirlah daerah C ∩ D 3. X = {1,2,3,4,5,6,8} Y = {6,8,9,10,12,13} a) Gambarkan diagram venn b) Arsirlah daerah X ∩ Y 4. A = {2,3,5,7,11,13,17,19,23} B = {3,7,13,17,23} a) Gambarkan diagram venn b) Arsirlah daerah A ∩ B Design by Destiniar, Marini, and Win 21 5. A = {a,i,u,e,o} B = {a,i,u,e,o} a) Gambarkan diagram venn b) Arsirlah daerah A ∩ B 6. A = {2,4,6,8} B = {1,3,5,7} a) Gambarkan diagram venn b) Arsirlah daerah A ∩ B Dari apa yang telah kamu kerjakan, apa yang dapat kamu simpulkan tentang irisan dua himpunan ?
  19. 19. Indikator No. 18 Menyajikan gabungan dua himpunan dengan diagram venn Petunjuk : Setelah kalian memahami daerah irisan dua himpunan, kalian diharapkan dapat juga menggambarkan gabungan dan menentukan daerah gabungan tersebut dengan diagram venn. Ditentukan : A = {1,2,3,4}, B = {2,4,6,8}, dan C = {3,4,5,6} • Langkah pertama Daftarlah semua anggota A ∪ B S R T • Langkah kedua Masukkanlah semua anggota A dan B, pada daerah yang sesuai • Langkah ketiga Arsirlah daerah yang merupakan A ∪ B Soal : 1. a) Tentukan anggota A ∪ C ? b) Gambarlah diagram venn-nya ! c) Arsirlah A ∪ C ! Design by Destiniar, Marini, and Win 23 2. a) Tentukan anggota B ∪ C ? b) Gambarlah diagram venn-nya ! c) Arsirlah B ∪ C ! 3. Ditentukan : A = {1,2,3,4,5,6,7} B = {2,3,5} a) Tentukan anggota B ∪ C ? b) Gambarlah diagram venn-nya ! c) Arsirlah B ∪ C ! 4. Ditentukan : C = {a,i,u,e,o} D = {k,l,m,n} a) Tentukan anggota C ∪ D ? 24 b) Gambarlah diagram venn-nya ! c) Arsirlah C ∪ D ! 5. Ditentukan : A = {1,3,5,7,9} B = {1,3,5,7,9} a) Tentukan anggota A ∪ B ? b) Gambarlah diagram venn-nya ! c) Arsirlah A ∪ B ! Indikator No.19 Menyajikan kurang suatu himpunan dari himpunan lain dengan diagram lain Petunjuk : Kita telah mengenal selisih himpunan A dan B pada materi terdahulu. A – B adalah elemen-elemen yang termasuk A tetapi tidak termasuk B. Pada bagian ini kita akan menentukan daerah A – B dengan diagram venn. Design by Destiniar, Marini, and Win 25 Misal : A = {1,2,3,4} B = {1,4,7,10} Maka : 1) A – B = {2,3} 1) B – A = {7,10} Coba kamu letakkan semua anggota A dan B pada tempat yang bersesuaian, kemudian arsirlah daerah A – B dan B – A S A B S A B A-B B-A Soal : 1. Diketahui : A = {1,2,3,6,8,9,11,13,14} B = {3,9,13,14,15,17,18} a) Tentukan A – B ? b) Tentukan B – A ? c) Gambarlah diagram venn A – B ! d) Arsirlah daerah A – B ! Design by Destiniar, Marini, and Win 26 e) Gambarlah diagram venn B – A ! f) Arsirlah daerah B – A ! g) Apakah A – B = B – A? Mengapa ? 2. Diketahui : A = {a,b,c,d,e,f,g} B = {a,c,e} a) Tentukan A – B ? b) Tentukan B – A ? c) Gambar dan arsir daerah A – B ¡ Design by Destiniar, Marini, and Win 27 d) Gambar dan arsir daerah B – A ¡ e) Apa yang dapat kamu simpulkan ? Indikator No. 20 Menyajikan komplemen suatu himpunan dengan diagram venn Petunjuk : Ingat kembali tentang defenisis komplemen dari A ! Komplemen A adalah Diketahui : S = Himpunan semesta huruf alfabet T = {x,y,z} a) Tentukan Tc ? b) Arsirlah Tc ? S T Design by Destiniar, Marini, and Win 28 Soal : 1. Diketahui : S adalah himpunan bilangan asli A = {1,2,3,4,5} a) Tentukan Ac ? b) Gambar dan arsir daerah Ac pada diagram venn ! 2. Diketahui : S adalah himpunan bilangan asli A = {2,3,5,7,11,13,17,19,23} B = {3,7,13,17,23} a) Gambar dan arsir daerah Ac pada diagram venn ! b) Gambar dan arsir daerah Ac pada diagram venn ! Design by Destiniar, Marini, and Win 29 3. Diketahui : S = {1,2,3, ... , 9} A = {1,2,3,4} B = {2,4,6,8} C = {3,4,5,6} a) Gambar dan arsir daerah Ac ¡ b) Gambar dan arsir daerah Bc ¡ c) Gambar dan arsir daerah Cc ! Design by Destiniar, Marini, and Win 30 Kompetensi Dasar 1.5 Menggunakan konsep himpunan dalam pemecahan masalah Indikator No.21 Menyelesaikan masalah dengan menggunakan
  20. 20. diagram venn Soal : 1. Dari 25 anak diantaranya 14 anak gemar IPA, 11 anak gemar Matematika, dan 5 anak gemar kedua-duanya. a) Buatlah diagram venn dari situasi tersebut ! b) Berapa banyak anak yang hanya gemar IPA ? c) Berapa banyak anak yang hanya gemar Matematika ? d) Berapa banyak anak yang tidak gemar IPA dan Matematika ? 2. Dalam suatu kelas terdapat 47 siswa, setelah dicatat terdapat 38 anak senang berolahraga, 36 anak senang membaca, dan 5 anak tidak senang berolahraga maupun membaca. Banyak anak yang senang berolahraga dan senang membaca adalah ... orang. (Gambarkan diagram venn-nya) 3. Tentukanlah daerah yang diarsir ! S P Q R Indikator No.22 Menyelesaikan masalah dengan konsep himpunan Soal : Diketahui : S = {1,2,3,4,5, ... , 20} A = {1,3,4,5,6,8,10,11,12,13} B = {4,5,8,11,14,15,16} Tentukan : 1) Ac = 2) Bc = 3) A ∩ B = 4) (A ∩ B)c = 5) A ∪ B = 6) (A ∪ B) = c 7) A – B = c 8) (A – B) = 9) Ac ∩ Bc = 10) Ac ∪ Bc = 11) Ac - Bc =

×