Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Atomic Force Microscope<br />By<br />Vimal Kumar<br />
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation of AFM<br />Forces ...
History of AFM<br />Development of Scanning tunneling microscopy (STM) in 1981 earned its inventors, GerdBinng and Heinric...
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force...
Principle of AFM:<br />
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force...
Block diagram of AFM:<br />http://www.farmfak.uu.se/farm/farmfyskem-web/instrumentation/images/afm.gif<br />
Ref: Synthetic Polymeric Membranes Characterization by  Atomic Force Microscopy  Page.26<br />
Piezoelectric Scanner:<br />http://nanohub.org/resources/520/play<br />
The Beam Deflection method<br />Courtesy- J. Gomez-Herrero, UAM, Spain<br />
Micro Cantilever of AFM<br />Tip is made up of Silicon Nitride or Silicon<br />Tip radius ranges from 10nm to 200nm,Normal...
The Microcantilever – the force sensor<br />
Needle AFM Tip<br />Needle is fabricated with Ag2Ga material<br />It is manufactured by Nano science Instruments<br />It i...
MWCNT AFM Tip:<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
CNT V/S Conventional Image:<br />
Thermocouple Tip:<br />Here thermocouple probes were used for scanning the surface.<br />It maps the local temperature and...
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force...
Modes of operation:<br />AFM Can be operated in 3 modes<br />            1)Contact Mode AFM<br />            2)Non-Contact...
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force...
Types of Forces:<br /><ul><li>Long-range electrostatic and magnetic forces (up to 100 nm)</li></ul>Capillary forces (few n...
Force Distance Curve:<br /> <br />
Other SPM Techniques:<br />STM – Scanning Tunneling Microscopy<br />LFM – Lateral Force Microscopy<br />EFM – Electric For...
Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force...
AFM for morphology of polymers:<br />
Dendrites of iPP:<br />Ref:  Microsc  Microanal 9 (Suppl  2).2003<br />
Spherulites:<br />Ref:  Microsc  Microanal 9 (Suppl  2).2003<br />
Crystallization(or)Spherulites formation:<br />This AFM tapping/phase mode image series shows the crystallization of a pol...
Some nano fillers have a nucleation effect on the crystallization of polymers, i.e. the number of nuclei is increased and ...
Block copolymer-Morphology<br />The tapping/phase mode image shows the bulk-morphology of a poly(styrene-b-ethylene/butyle...
Polymer Blends:<br />This AFM tapping/phase mode image shows the bulk-morphology of a partially miscible blend of isotacti...
NanoFibre investigation<br />Ref:  Microsc Microanal 10(Suppl 2), 2004<br />
NANOFIBRE BLEND INVESTIGATION<br />Ref:  Microsc Microanal 10(Suppl 2), 2004<br />
NANOINDENDATION BY AFM<br />
NANOINDENDATION<br />Nanoindentation is used for measuring young's modulus(E)  of material, stiffness, hardness of materia...
hc Depth of the residual indentation
Β  Constant
ErMdulus
S  stiffness (The slope of the curve, dP / dh)</li></ul>Where:<br />Pmax  = maximum presure applied<br />Ar = area of the ...
NANO INDENTATION-I<br />AFM is operated in force mode<br />a diamond-tipped stainless steel cantilever probe is used and t...
Nano pull out technique<br />
Nano Pull Out Technique:<br />Carbon nanotube(MWCNT) is used as tip for AFM<br />Here Polyethylene-butene thin film(~300 n...
Exit Hole<br />Exit hole length<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
Pull out force is found to be 47 Mpa<br />The normal force of conventional fibers is 10Mpa<br />From it we can conclude th...
AFM for polymer membranes<br />
AFM for Membranes<br />Pore size by TEM, SEM are very small when compared to AFM<br />By  Using  AFM  we can find the Pore...
Upcoming SlideShare
Loading in …5
×

Vimal Kumar Mat 527

2,287 views

Published on

This presentation is about the application of Atomic Force Microscopy in Polymer Science and Composites

  • Be the first to comment

Vimal Kumar Mat 527

  1. 1. Atomic Force Microscope<br />By<br />Vimal Kumar<br />
  2. 2. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation of AFM<br />Forces & Force Distance curve<br />Applications of AFM in Polymers<br />
  3. 3. History of AFM<br />Development of Scanning tunneling microscopy (STM) in 1981 earned its inventors, GerdBinng and Heinrich Rohrer (at IBM Zürich), the Nobel Prize in Physics in 1986<br />Based on the above work Binnig, Quate and Gerber invented the first AFM in 1986<br />Heinrich Rohrer<br />Gerd Binnig<br />http://en.wikipedia.org/wiki/AFM<br />
  4. 4. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force Distance curve<br />Applications of AFM<br />
  5. 5. Principle of AFM:<br />
  6. 6. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force Distance curve<br />Applications of AFM<br />
  7. 7. Block diagram of AFM:<br />http://www.farmfak.uu.se/farm/farmfyskem-web/instrumentation/images/afm.gif<br />
  8. 8. Ref: Synthetic Polymeric Membranes Characterization by Atomic Force Microscopy Page.26<br />
  9. 9. Piezoelectric Scanner:<br />http://nanohub.org/resources/520/play<br />
  10. 10. The Beam Deflection method<br />Courtesy- J. Gomez-Herrero, UAM, Spain<br />
  11. 11. Micro Cantilever of AFM<br />Tip is made up of Silicon Nitride or Silicon<br />Tip radius ranges from 10nm to 200nm,Normal radius is 50 nm<br />Spring constant is 0.1 to 100 N/m<br />Nowadays CNT tips were used for special applications. In this case radius will be 15nm to 10 nm<br />
  12. 12. The Microcantilever – the force sensor<br />
  13. 13. Needle AFM Tip<br />Needle is fabricated with Ag2Ga material<br />It is manufactured by Nano science Instruments<br />It is available in varying lengths, diameters, and attachment angles<br />Needle AFM tips are available in standard lengths of 1, 5, or 10 µm with a diameter of 50 nm.<br />The simple geometry and high conductivity of the Needle probes provides a wide range of enhanced sensing and manipulation capabilities<br />http://www.nanoscience.com/news/2009-Mar24.html<br />
  14. 14. MWCNT AFM Tip:<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
  15. 15. CNT V/S Conventional Image:<br />
  16. 16. Thermocouple Tip:<br />Here thermocouple probes were used for scanning the surface.<br />It maps the local temperature and thermal conductivity of an interface.<br />It can be used to detect phase changes in polymer blends <br />Measuring material variations in Conducting Polymers.<br />Hot-spots in integrated circuits <br />http://en.wikipedia.org/wiki/Scanning_thermal_microscopy<br />
  17. 17. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force Distance curve<br />Applications of AFM<br />
  18. 18. Modes of operation:<br />AFM Can be operated in 3 modes<br /> 1)Contact Mode AFM<br /> 2)Non-Contact Mode AFM<br /> 3)Taping Mode AFM<br />
  19. 19.
  20. 20. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force Distance curve<br />Applications of AFM<br />
  21. 21. Types of Forces:<br /><ul><li>Long-range electrostatic and magnetic forces (up to 100 nm)</li></ul>Capillary forces (few nm)<br />Vander Waals forces (few nm) that are fundamentally quantum mechanical (electrodynamic) in nature<br />Casimir forces<br />Short-range chemical forces (fraction of nm)<br />Contact forces<br />Electrostatic double-layer forces<br />Salvation forces<br /> Neoconservative forces<br />https://nanohub.org/resources/522/download/2005.11.28-raman.pdf<br />
  22. 22. Force Distance Curve:<br /> <br />
  23. 23. Other SPM Techniques:<br />STM – Scanning Tunneling Microscopy<br />LFM – Lateral Force Microscopy<br />EFM – Electric Force Microscopy<br />MFM – Magnetic Force Microscopy<br />SCM – Scanning Capacitance Microscopy<br />FMM – Force Modulation Microscopy<br />SNOM – Scanning Near Field Optical Microscopy<br />
  24. 24. Outline:<br />History of AFM<br />Principle of AFM<br />Instrumentation of AFM<br />Modes of operation<br />Forces & Force Distance curve<br />Applications of AFM in Polymer Science<br />
  25. 25. AFM for morphology of polymers:<br />
  26. 26. Dendrites of iPP:<br />Ref: Microsc Microanal 9 (Suppl 2).2003<br />
  27. 27. Spherulites:<br />Ref: Microsc Microanal 9 (Suppl 2).2003<br />
  28. 28. Crystallization(or)Spherulites formation:<br />This AFM tapping/phase mode image series shows the crystallization of a polylactide spherulite, crystallized from the melt at 95°C<br />http://www.polymermicroscopy.com/eng_afm_lacti1.htm<br />
  29. 29. Some nano fillers have a nucleation effect on the crystallization of polymers, i.e. the number of nuclei is increased and the crystallization time of the sample reduced.<br /> Additionally the size of the crystalline superstructures, e.g. spherulites, decreases and the transparency of the sample might be improved.<br />The example shows isotactic polypropylene with different amounts of the nano filler "Disperal® 20" (Sasol). With increasing filler content the size of the crystalline superstructures is clearly reduced.<br />1% Disperal®<br />0% Disperal<br />2% Disperal®<br />10% Disperal®<br />Nano fillers Nucleation:<br />Macromolecular Materials and Engineering (2008), 293(3), 218-227.<br />
  30. 30. Block copolymer-Morphology<br />The tapping/phase mode image shows the bulk-morphology of a poly(styrene-b-ethylene/butylene/styrene-b-styrene) tri-block-copolymer.<br />http://www.polymermicroscopy.com/eng_afm_block.htm<br />
  31. 31. Polymer Blends:<br />This AFM tapping/phase mode image shows the bulk-morphology of a partially miscible blend of isotactic polypropylene (matrix) and of a non-crystalline polyethylene copolymer. Within the polyethylene phases single i-PP lamellae are visible. <br />Phase dispersion in polymer blends<br />Phase dispersion of ethylene propylene rubber (EPR) in impact copolymers (ICP)<br />Ref: Microsc Microanal 9 (Suppl 2).2003<br />Miscibility of Branched Ethene Homopolymers with Iso- and Syndiotactic Polypropenes. Jürgen Marquardt, Ralf Thomann, Yi Thomann, Johannes Heinemann and Rolf Mülhaupt Macromolecules, 2001, 34, (25), 8669-8674 <br />
  32. 32. NanoFibre investigation<br />Ref: Microsc Microanal 10(Suppl 2), 2004<br />
  33. 33. NANOFIBRE BLEND INVESTIGATION<br />Ref: Microsc Microanal 10(Suppl 2), 2004<br />
  34. 34. NANOINDENDATION BY AFM<br />
  35. 35. NANOINDENDATION<br />Nanoindentation is used for measuring young's modulus(E) of material, stiffness, hardness of material.<br />Where:<br /><ul><li>A(hc) - Area of the indentation
  36. 36. hc Depth of the residual indentation
  37. 37. Β Constant
  38. 38. ErMdulus
  39. 39. S stiffness (The slope of the curve, dP / dh)</li></ul>Where:<br />Pmax = maximum presure applied<br />Ar = area of the bore<br />H= Harness<br />http://en.wikipedia.org/wiki/Nanoindentation<br />
  40. 40. NANO INDENTATION-I<br />AFM is operated in force mode<br />a diamond-tipped stainless steel cantilever probe is used and the dents from left to right were taken using compensation angles of 0, 10, 20, 30, 35, 40, 45, and 50 degrees<br />Ref : M. R. VanLandingham, "The Effect of Instrumental Uncertainties on AFM Indentation Measurements," Microscopy Today, Issue No. 97-10, December 1997, pp. 12-15.<br />
  41. 41. Nano pull out technique<br />
  42. 42. Nano Pull Out Technique:<br />Carbon nanotube(MWCNT) is used as tip for AFM<br />Here Polyethylene-butene thin film(~300 nm)<br />In this Polymer CNT interaction Force is found <br />In this single CNT is Introduced then detached from the polymer .<br />This test is very important when we reinforce CNT in the polymer in the process of Composite manufacturing.<br />MWCNT AFM Tip:<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
  43. 43. Exit Hole<br />Exit hole length<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
  44. 44. Pull out force is found to be 47 Mpa<br />The normal force of conventional fibers is 10Mpa<br />From it we can conclude that CNTs are better materials for composites then the fibers.<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />
  45. 45. AFM for polymer membranes<br />
  46. 46. AFM for Membranes<br />Pore size by TEM, SEM are very small when compared to AFM<br />By Using AFM we can find the Pore Size, Density, Size Distribution, Pore Connectivity, Surface Roughness can be calculated.<br />From above data we can calculate the Mean pore size ,Median pore size…etc <br />The above date is very impotent when we want to design a good filtration equipment.<br />AFM is a good Quality Control tool for the membrane process engineers<br />
  47. 47.
  48. 48.
  49. 49.
  50. 50. References:<br />Polymer Microscopy By Linda C. Sawyer, David T.Grubb<br />Synthetic Polymeric Membranes By K.C.Khulbe, C.Y.Feng, T.Matsuura<br />Atomic Force Microscopy in Cell Biology By Bhanu P.Jena, J.K.heinrich Horber, American Society for Cell Biology<br />Atomic Force Microscopy By Pier Carlo Braga, Davide Ricci<br />Ref: Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br /> M. R. VanLandingham, J. S. Villarrubia, W. F. Guthrie, G. F. Meyers, "Nanoindentation of Polymers: An Overview," in Macromolecular Symposia, 167,<br /> Advances in Scanning Probe Microscopy of Polymers, V. V. Tsukruk and N. D. Spencer, eds. (2001) 15-44.<br />Miscibility of Branched EtheneHomopolymers with Iso- and SyndiotacticPolypropenes. Jürgen Marquardt, Ralf Thomann, Yi Thomann, Johannes Heinemann and Rolf Mülhaupt Macromolecules, 2001, 34, (25), 8669-8674<br />Macromolecular Materials and Engineering (2008), 293(3), 218-227.<br />MicroscMicroanal 10(Suppl 2), 2004<br />Appl. Phys. Lett., Vol. 82, No. 23, 9 June 2003<br />www.nanoscience.com/news<br />www.wikipedia.org<br />www.google.com<br />www.nanohub.com/online_onlinelectures<br />
  51. 51. Questions?<br />

×