TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)

T
Thomas WintersPhD Researcher at KU Leuven
Slides: thomaswinters.be/clin
Professor Canon Law & Former Rector KU Leuven
Fully-automated Twitterbot imitating Rik Torfs
Trained on his tweets & columns
Launched in 2016
Algorithm 1: Markov Chain (Interpolated 35-gram)
1. Counts frequency of word after previous words
in tweets & columns van Rik Torfs
“gevolgd door”
4: een
2: zijn
1: iemand
1: acht
Beste,
2. Takes start words and repeatedly predicts
Algorithm 2: Dynamic template
1. Take random tweet and a random column lines
2. Change tweet key words with words from
column with same part-of-speech
Markov chain 35% more interactions
than dynamic template
(17K interactions on 8K tweets over from June 2017 to June 2023)
Previous work: Winters, T. (2019).Generating PhilosophicalStatements using InterpolatedMarkovModels and Dynamic Templates.
31st EuropeanSummer Schoolin Logic, Language and InformationStudent Session Proceedings, 181–189.
Funny fail?
Believable parody?
Tweets daily poll with random tweet from either Rik Torfs or TorfsBot
602 polls
47K votes total (avg 79/poll)
71% correct votes
87% correct majority
68 TorfsBot success
12 Rik Torfs fails
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
Slightly positively
correlated
(0.11 for log(interactions) with %votes)
Little difference
between algorithms
More interactions
~ more believable
Weirdly more so
for Rik than bot
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
#1
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
#2
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
#3
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
#4
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
De laatste TorfsBot Or Not!
#5
TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)
Slides: thomaswinters.be/clin
1 of 26

More Related Content

Recently uploaded(20)

LAVADORA ROLO.docxLAVADORA ROLO.docx
LAVADORA ROLO.docx
SamuelRamirez835247 views
HarshithAkkapelli_Presentation.pdfHarshithAkkapelli_Presentation.pdf
HarshithAkkapelli_Presentation.pdf
harshithakkapelli10 views
Winter '24 Release Chat.pdfWinter '24 Release Chat.pdf
Winter '24 Release Chat.pdf
melbourneauuser9 views
SAP FOR CONTRACT MANUFACTURING.pdfSAP FOR CONTRACT MANUFACTURING.pdf
SAP FOR CONTRACT MANUFACTURING.pdf
Virendra Rai, PMP11 views
Tridens DevOpsTridens DevOps
Tridens DevOps
Tridens9 views
SAP FOR TYRE INDUSTRY.pdfSAP FOR TYRE INDUSTRY.pdf
SAP FOR TYRE INDUSTRY.pdf
Virendra Rai, PMP14 views

TorfsBot or Not? Evaluating User Perception on Imitative Text Generation (CLIN33)

Editor's Notes

  1. Voor de mensen die Rik Torfs niet kennen: Professor Kerkelijk Recht Ex-rector KU Leuven Maarook: fervent Twitteraar Op Twitter sinds 2010 Speaks in algemeenheden en boutades “Vlaams Orakel” “Koning van de boutade”
  2. Volautomatische Twitterbot Heeft leren tweeten zoals Rik Torfs door zijn tweets & columns te analyseren Simpel Markov model & kernwoorden vervanger Tweet 5x per dag en antwoordt op iedereen
  3. automatische kernwoord vervangingen
  4. Deze tweet is met het dynamische sjabloon op Rik’s originele tweet