Open online version of this article can ...
SAGE OpenApril-June 2013: 1­–19© The Author(s) 2013DOI: 10.1177/2158244013484476sgo.sagepub.comSupposition without appreci...
2	 SAGE Opennine transcripts (Sebastian & Bulun, 2001) for specific tissueexpression (Figure 1). For example, the major pl...
Malone	 3Jones, & Wootton, 2002; Giltay, Gooren, Toorians, Katan, &Zock, 2004), to provision the unborn and nursing infant...
4	 SAGE OpenKim, 2001; Kim, Akbar, Lau, & Edsall, 2000; Lukiw et al.,2005; McNamara, 2010; Morris et al., 2003). Dysregula...
Malone	 5to predispose ASD pathogenesis with male bias (Angelidouet al., 2012; Becker, 2012; Hu, 2013a, 2013b; James, 2008...
6	 SAGE Opendependent variable and group size is one of the independentvariables for the purpose of the model. This study ...
Malone	 7Figure 4. Alignment of CYP19A1 with 21 vertebrate species to the human genome. The dashed lines indicate regions ...
8	 SAGE Openwithout threat of multicollinearity as the variance inflationfactor for all variables is below 10 and all coll...
Malone	 9notypic plasticity, as modified by gender and age of expo-sure, will modify the consequences.Unfortunately, great...
10	 SAGE Openand complexity of the gene, a wide range of phenotypic pro-files arise from histone transcription regulation,...
Malone	 11(a) increased DHA production in mammary tissues (Caspi etal., 2007; Lammi-Keefe, Rozowski, Parodi, Sobrevia, &Fo...
12	 SAGE OpenReferencesAbramovich, D., & Rowe, P. (1973). Foetal plasma testosteronelevels at mid-pregnancy and at term: R...
Malone	 13Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. NewYork, NY: Basic Books.Bowlby, J. (1988). A secure...
14	 SAGE Openchildren with autism spectrum disorder: Developing a researchagenda. Pediatrics, 130(Suppl. 2), S160-S168. do...
Malone	 15Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim,L. P., & Bartel, D. P. (2007). MicroRNA targe...
16	 SAGE OpenBrowser data retrieval tool. Nucleic Acids Research, 32(Suppl.1), D493-D496. doi:10.1093/nar/gkh103Kawakita, ...
Malone	 17alternative promoters. Nature, 466, 253-257. doi:10.1038/nature09165McCarthy, M. M. (2008). Estradiol and the de...
18	 SAGE OpenRidley, R. M., & Baker, H. F. (1982). Stereotypy in monkeys andhumans. Psychological Medicine, 12, 61-72. doi...
Malone	 19Strober, W., & Fuss, I. J. (2011). Proinflammatory cytokines in thepathogenesisofinflammatoryboweldiseases.Gastr...
Upcoming SlideShare
Loading in …5

Phenotypic Plasticity, CYP19A1 Pleiotropy, and Maladaptive Selection in Developmental Disorders


Published on

The contribution of evolutionary psychology to the study of development and psychopathology depends on adherence to the principles of evolutionary biology. The human brain evolved because selection favored neither size nor complexity but
instead the phenotypic plasticity supporting cognitive flexibility. Cell proliferation, migration, elongation, synaptogenesis, synaptic pruning, apoptosis, and myelination occur at varying rates during asynchronous phases of development throughout
the brain. Developmentally sensitive periods result from phenotypic plasticity and are vital for adaptation to the environment. The biological systems surrounding the CYP19A1 gene provide mechanisms for neuroprotection and targeted neuronal
debridement in response to environmental stress, uniting selection with developmental biology. Updates to Dunbar’s original hypothesis with current primatological data, inclusion of total brain mass, and the introduction of CYP19A1 orthology from
nine primate species yields a linear regression, R2 = .994, adjusted R2 = .989, F(3, 5) = 143.758, p < .001.

Published in: Health & Medicine, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Phenotypic Plasticity, CYP19A1 Pleiotropy, and Maladaptive Selection in Developmental Disorders

  1. 1. Open online version of this article can be found at:DOI: 10.1177/21582440134844762013 3:SAGE OpenJ. Patrick MalonePhenotypic Plasticity, CYP19A1 Pleiotropy, and Maladaptive Selection in Developmental DisordersPublished by:http://www.sagepublications.comcan be found at:SAGE OpenAdditional services and information for Alerts: Open are in each case credited as the source of the article.permission from the Author or SAGE, you may further copy, distribute, transmit, and adapt the article, with the condition that the Author and© 2013 the Author(s). This article has been published under the terms of the Creative Commons Attribution License. Without requestingby guest on May 12, 2013sgo.sagepub.comDownloaded from
  2. 2. SAGE OpenApril-June 2013: 1­–19© The Author(s) 2013DOI: 10.1177/2158244013484476sgo.sagepub.comSupposition without appreciation for evolutionary mecha-nisms represents a danger to the field of evolutionary psy-chology. Microevolution (e.g., natural selection and geneticdrift) operates in synergistic fashion with macroevolution(e.g., evolutionary history and adaptive constraints), as coor-dinated by developmental biology responding to an environ-ment. In general, natural, sexual, frequency-dependent,individual, kin, group, and species selection operate on phe-notypes and drive change in gene frequency across succes-sive generations. Mutation, the founder effect, the bottleneckeffect, drift, and Mendel’s fair coin represent opportunitiesfor variation. Random variation creating synonymous basesubstitutions, pseudogenes, and neutral amino acids mayhave no evolutionary effect. Evolution can be very fast whenselection is directed and strong in a large population withgreat diversity, but rapid modifications usually incur coststhat destabilize changes. The price of change may inducemaladaptation, or even dysfunction in response to environ-mental extremes, and this is evident in the evolution of thehuman brain.Evolution fashioned a balance between the energetics(Aiello & Wheeler, 1995; Clutton-Brock & Harvey, 1980;Foley, Lee, Widdowson, Knight, & Jonxis, 1991; Herculano-Houzel, 2011; Snodgrass, Leonard, & Robertson, 2009) ofhigh cell number for information storage and retrieval (e.g.,elephants), complexity for sense data processing and calcula-tion (e.g., sonar-dependent bats), or both as in cetaceans andprimates (Herculano-Houzel & Kaas, 2011; Snodgrass et al.,2009). The crucial element in human brain evolution is plas-ticity, which is not merely cell growth and neurite organiza-tion but also malleable interconnectivity and targeted cellremoval. Warm social contact and environmental enrichmentearly in life tend to support neuron development and connec-tion retention (Diamond, 1991; Harlow & Harlow, 1965;Smith, Greenberg, Seltzer, & Hong, 2008); negative stresstends to destabilize growth and enhance apoptosis (Belsky &de Haan, 2011; De Bellis & Kuchibhatla, 2006; Hallmayer etal., 2011; Harlow, 1974; Malone, 2011c, 2011d; Slavich,Way, Eisenberger, & Taylor, 2011). These factors demon-strate gender bias and thus provide triangulation in the searchfor a genetic mechanism that unites developmental disorderwith evolution (Malone, 2012).The CYP19A1 gene codes for cytochrome P450 aroma-tase (P450arom) and is located on the long leg of chromo-some 15, at 21.2 (S. A. Chen et al., 1988; Simpson et al.,1994; Zhang et al., 2004). P450arom is the enzyme that con-verts testosterone into the most pervasive and biologicallyactive steroid, neuroprotective estradiol (E2). The region onCYP19A1 that codes for P450arom must splice onto one of484476SGOXXX10.1177/2158244013484476SAGE OpenMaloneresearch-article20131Walden University, OR, USACorresponding Author:J. Patrick Malone, College of Behavioral Sciences, Department ofPsychology, Walden University, 5083 Falcon Dr., Klamath Falls, OR97601-9155, USA.Email: Jeffrey.Malone@WaldenU.eduPhenotypic Plasticity, CYP19A1Pleiotropy, and Maladaptive Selection inDevelopmental DisordersJ. Patrick Malone1AbstractThe contribution of evolutionary psychology to the study of development and psychopathology depends on adherence tothe principles of evolutionary biology. The human brain evolved because selection favored neither size nor complexity butinstead the phenotypic plasticity supporting cognitive flexibility. Cell proliferation, migration, elongation, synaptogenesis,synaptic pruning, apoptosis, and myelination occur at varying rates during asynchronous phases of development throughoutthe brain. Developmentally sensitive periods result from phenotypic plasticity and are vital for adaptation to the environment.The biological systems surrounding the CYP19A1 gene provide mechanisms for neuroprotection and targeted neuronaldebridement in response to environmental stress, uniting selection with developmental biology. Updates to Dunbar’s originalhypothesis with current primatological data, inclusion of total brain mass, and the introduction of CYP19A1 orthology fromnine primate species yields a linear regression, R2= .994, adjusted R2= .989, F(3, 5) = 143.758, p < .001.Keywordsautistogenesis, CYP19A1, plasticity, evolution, disorderby guest on May 12, 2013sgo.sagepub.comDownloaded from
  3. 3. 2 SAGE Opennine transcripts (Sebastian & Bulun, 2001) for specific tissueexpression (Figure 1). For example, the major placental tran-script contributes to increased circulating E2 in pregnantwomen by 2 to 3 orders of magnitude (Abramovich & Rowe,1973). However, uniting large transcripts prior to translationpermits many opportunities for transcript-level regulationand dysfunction, especially at the common splice site.Circulating serum estradiol demonstrates wide rangingeffects throughout the body and directly regulates theinflammatory response in all tissues (Bastarache et al.,2012; Bechlioulis et al., 2012; Chakrabarti & Davidge,2013; Douin-Echinard et al., 2011; Sophonsritsuk et al.,2013; Zierau, Zenclussen, & Jensen, 2012) and is linked toautoimmunity in males (Becker, 2012). The inflammatorycascade is a system of feed-forward and feedback loops, andmetabolites of these processes directly regulate gene expres-sion in cells that reside within entirely different tissues, suchas the gastrointestinal (GI) tract (Ahlquist et al., 1982;Grossman, Brazier, & Lechago, 1981; Strober & Fuss, 2011;Whittle, 1981). This is a bidirectional phenomenon andmany proinflammatory compounds used by the GI as chem-ical messengers trigger schizophrenic individuals and exac-erbate challenges with autism spectrum disorders (ASDs)and multiple sclerosis (S. M. Collins, Surette, & Bercik,2012; Coury et al., 2012; Frye, Melnyk, & MacFabe, 2013;Maenner et al., 2012; Severance et al., 2012).Sex hormone production peaks in the third trimester andthen diminishes before birth, followed by a massive prepu-bertal surge (Figure 2) weeks later (Fitch & Denenberg, 1998;Forest, Sizonenko, Cathiard, & Bertrand, 1974; Main,Schmidt, & Skakkebæk, 2000). Potentially neurotoxic levelsof testosterone are converted by P450arom into E2 whichstimulates neurogenesis, neurite outgrowth, elongation, syn-aptogenesis, and regeneration, and mitigates apoptosis,necrosis, and physiological debridement (Arai, Sekine, &Murakami, 1996; Beyer, 1999; Fukudome et al., 2003;Garcia-Segura, 2008; Hao et al., 2006; Ma et al., 1993;Prange-Kiel & Rune, 2006; Quesada, Lee, & Micevych,2009; Rasmussen, Torres-Aleman, MacLusky, Naftolin, &Robbins, 1990; Zhang et al., 2004), including connections toolivary cells otherwise deficient in autistics with male bias(Malone, 2011a, 2012). Studies indicate E2 regulates neuro-genesis and apoptosis throughout the cortex (Arai et al., 1996;Fukudome et al., 2003; Raimundo et al., 2012; Real, Meo-Evoli, Espada, & Tauler, 2011) differentially by region and iscontext-specific through α- and β-estrogen receptor subtypeson cortical cells, during different periods of development(Kritzer, 2006; Ma et al., 1993; Rasmussen et al., 1990).Converting normal levels of testosterone into E2 enhancesverbal and spatial performance (Cherrier et al., 2007; Spritzeret al., 2011), promotes the development of Purkinje cellaxons within the ventromedial nucleus (VMN) of the hypo-thalamus with male bias (Keller, Panteri, & Biamonte, 2010),and regulates cell size, number, and activity in the fusiformgyrus (Bölte et al., 2006; Hall, Szechtman, & Nahmias,2003; van Kooten et al., 2008). E2 enhances long-termpotentiation (Mukai et al., 2007; Woolley, 2007), object rec-ognition and spatial memory (Luine, Jacome, & Maclusky,2003) with male bias, modulates working memory (Sinopoli,Floresco, & Galea, 2006), and promotes antioxidant metabo-lism that inhibits neuroinflammatory processes with femalebias (Sen, Khanna, & Roy, 2006). It is interesting to note thata recent study (Sharawy, Hassan, Rashed, Shawky, & Rateb,2012) also demonstrates that E2 levels differentially regulatethe hypothalamic-pituitary-adrenal (HPA) axis responseunder stress.E2 also regulates docosahexaenoic acid (DHA) synthesis,which is significantly produced in females only (Burdge,Figure 1  The highly complex CYP19A1 gene contains nine major tissue specific transcripts separate from the aromatase coding. RNA fortissue and the enzyme must link prior to translation, thus the common splice site represents a region for regulation and failure. CYP19A1is unusually large, with increased probability for mutation, maladaptive methylation, histone modification, dysregulation from compromisedfeedback messengers, and the influence of more than a dozen major alleles identified thus far. The transcript region for Bone (~ 20kb),Breast Cancer / Adipose and Ovary (~0.5), and Breast Cancer & Endometriosis (~0.2) are combined due to their comparatively small sizeand adjoining positions in the sequence. The illustration is thus not to scale and is adapted from The Systems Theory of Autistogenesis:Putting the Pieces Together (p. 5), by J. P. Malone, 2012, Los Angeles, CA, Sage Publications. Copyright 2012. Adapted with guest on May 12, 2013sgo.sagepub.comDownloaded from
  4. 4. Malone 3Jones, & Wootton, 2002; Giltay, Gooren, Toorians, Katan, &Zock, 2004), to provision the unborn and nursing infantwhile protecting maternal prosociality. Placental uptake ishighest during the final trimester which also represents thegreatest phase of neurogenesis, neurite formation, and arbo-rization (Green & Yavin, 1998). E2 also regulates glutama-tergic neurotransmission and so provides protection againstexcitotoxicity (Blaylock & Strunecka, 2009; Choudhury,Lahiri, & Rajamma, 2012; Spampinato, Merlo, Nicoletti, &Sortino, 2012) and glutathione-mediated redox/antioxidantcapacity (Rose et al., 2012). DHA is essential for neurongrowth, elongation, arborization, neurite outgrowth, synapticpruning, and provides protection against apoptosis andnecrosis (P. Green & Yavin, 1998; Hashimoto et al., 2005;Horrocks & Yeo, 1999; Ikemoto, Kobayashi, Watanabe, &Okuyama, 1997; Kan, Melamed, Offen, & Green, 2007;Kawakita, Hashimoto, & Shido, 2006; Okada et al., 1996)DHA, in a physiologically correct ratio (Hashimoto et al.,2002; Hashimoto et al., 2005; Rapoport, Ramadan, &Basselin, 2011; Rapoport, Rao, & Igarashi, 2007) with ara-chidonic acid (AA), enhances synaptic transmission andlong-term potentiation (Itokazu, Ikegaya, Nishikawa, &Matsuki, 2000; Poling, Vicini, Rogawski, & Salem, 1996;Vreugdenhil et al., 1996; Young, Gean, Chiou, & Shen, 2000;Young, Gean, Wu, Lin, & Shen, 1998). DHA reduces apop-tosis by promoting phosphatidylserine (PS) production, up-regulating antiapoptotic genes, and inhibiting proapoptoticmetabolites (Horrocks & Farooqui, 2004; Kim, Akbar, &Figure 2.  The pre and post natal, prepubescent, and pubescent sex hormone surges occur just prior to the onset of developmentallysensitive periods. Developed from “Sex differences in adolescent depression: Do sex hormones determine vulnerability?” by E. F. G.Nanick, P. J. Lucassen & J. Bakker, 2011, The Journal of Neurobiology, 23(55), 1-10. Copyright, 2011 by Blackwell Publishing Ltd; “Corticaldevelopment, plasticity and reorganization in children with cochlear implants,” by A. Sharma, A. A., Nash & M. Dorman, 2009, The Journalof Communication Disorders, 42(4), 272-279. Copyright, 2009 by Elsiver; “Early Years Study final report: Reversing the real brain drain,”by J. F. Mustard & M. N. McCain, 2000, Toronto, Canada: Ontario Children’s Secretariat; “Effects of stress throughout the lifespan on thebrain, behaviour and cognition,” by S. J.Lupien, B. S. McEwen, M. R. Gunnar & C. Heim, 2009, Nature Reviews Neuroscience, 10, 434-445.Copyright, 2009 by Nature Publishing Group; “Protecting brains, not simply stimulating minds,” by J. P. Shonkoff, 2011, Science, 333(6045),982-983. Copyright, 2011 by American Association for the Advancement of guest on May 12, 2013sgo.sagepub.comDownloaded from
  5. 5. 4 SAGE OpenKim, 2001; Kim, Akbar, Lau, & Edsall, 2000; Lukiw et al.,2005; McNamara, 2010; Morris et al., 2003). Dysregulationof the omega-3/omega-6 fatty acid balance within the brainpromotes increased neuroinflammatory degeneration (Rao,Kim, et al., 2011; Rao, Rapoport, & Kim, 2011). This proin-flammatory reaction, including oxidative stress, results inapoptosis, cell debris, and poorly functioning yet intact cellsremoved by brain macrophages and microglia (Malone,2011b, 2011c; Paolicelli et al., 2011), and so this broadsequence of events is both directly and indirectly regulatedby CYP19A1 expression (Malone, 2012).McCarthy (2008) indicated differing aspects of the devel-oping brain are immune to E2’s fast and potent influence atvarious stages, thought to prevent aberrant neuronal develop-ment (Malone, 2012). This explains why estradiol may loseefficacy or even enhance risk of neurodegenerative processesfollowing stroke in women older than 65 (Azcoitia, Arevalo,De Nicola, & Garcia-Segura, 2011). However, in preterminfants fed high-dose DHA (1% total fatty acids) infant milkformulademonstratedimprovedBayleyMentalDevelopment(MDI) scores at 18 months corrected age in females only(Makrides et al., 2009). Because oxytocin receptor (OXTR)sites are also regulated by E2 (Nissenson, Flouret, & Hechter,1978), social and emotional attachments (Ainsworth, 1969;Ainsworth, Blehar, Waters, & Wall, 1978; Bard, 2012; Bard& Gardner, 1996; Bowlby, 1969, 1988; Bretherton, 1992;Harlow & Harlow, 1965; Maestripieri, 2003; Russell &Ainsworth, 1981; van Ijzendoorn, Bard, Bakermans-Kranenburg, & Ivan, 2008) are strongly influenced by E2 (F.S. Chen & Johnson, 2012; Krueger et al., 2012), as are thedynamics of male aggression (Love et al., 2012; Trainor, Lin,Finy, Rowland, & Nelson, 2007). Therefore, CYP19A1expression broadly influences the sensitive periods of gen-der-specific emotional and social behavior, and the brainplasticity supporting primate cognition responsive to adynamic environment (Malone, 2011d, 2012).Since Dunbar (1992), many have suggested the process ofhominid brain evolution accelerated by selection favoring aneurology that facilitates behaviors such as (a) imitation, (b)social mediation, (c) Machiavellian strategizing, and (d) theinterpersonal relationships of coalition formation (Byrne &Corp, 2004; Call & Tomasello, 1998; Schillaci, 2008; Wilson,Kahlenberg, Wells, & Wrangham, 2011; Wrangham, 1993).Numerous studies have explored the issue of brain develop-ment through evolution but disappoint, in part by failing toaccount for the differences in study samples due to develop-mental stage (for a review, see Healy & Rowe, 2007). Thecritical aspect to human brain evolution is phenotypic plas-ticity; primate brains experience tremendous cell prolifera-tion postpartum, selective synaptic pruning in response to aninfinitely variable environment, “hard-wiring” due tomyelination (Figure 2), and CYP19A1 is principal to each ofthese processes.The aim of the current study is twofold. The first purposewas to explore the evolution of CYP19A1 as evidenceindicates developmental derailment is not an exclusivelyhuman condition (Bastian, Sponberg, Suomi, & Higley,2003; Brent, Lee, & Eichberg, 1989; Brüne, Brüne-Cohrs,McGrew, & Preuschoft, 2006; Capitanio, Mendoza, Mason,& Maninger, 2005; Clay, 2012; Conti et al., 2012; Davenport,1979; Davenport & Menzel, 1963; Davenport & Rogers,1970; Davenport, Rogers, & Rumbaugh, 1973; Ferdowsianet al., 2011; Goodall, 1986; Harlow & Harlow, 1965; Hook etal., 2002; Kalcher-Sommersguter, Preuschoft, Crailsheim, &Franz, 2011; Kempes, Gulickx, van Daalen, Louwerse, &Sterck, 2008; Malone, 2011d; Nash, Fritz, Alford, & Brent,1999; Ridley & Baker, 1982). The cognitive flexibility thatallows for invention and manipulation of tools, whethermaterial or social, rests at the core of primate brain evolutionhypotheses (Barton, 1996; Byrne & Corp, 2004; Call &Tomasello, 1998; Dunbar, 1992, 1998, 2010; Dunbar &Shultz, 2007; Joffe & Dunbar, 1997; Jolly, 1966; Kudo &Dunbar, 2001; McGrew, 1992; Pawlowski, Lowen, &Dunbar, 1998). Because the human brain does not matureunilaterally during ontogeny, nor has it done so through phy-logeny, there may be genetic mechanisms that link selectionto developmental neurobiology.While it is true that brain size and complexity correlate tophysiological and ecological factors (Allman, McLaughlin,& Hakeem, 1993; Armstrong, 1985; Clutton-Brock &Harvey, 1980; Dunbar & Shultz, 2007; Harvey & Krebs,1990; Walker, Burger, Wagner, & Von Rueden, 2006), theauthor suggests that genetic mechanisms supporting thesocial brain hypothesis would correlate less as taxonomygoes phylogenetically afield. Such a mechanism must alsoaccount for the gender-biased differences in developmentalpathology (Malone, 2011d, 2012) and the evidence that neo-cortical volume positively correlates to group size in femalesbut not to males (Lindenfors, 2005). Therefore, this studyfirst seeks to determine if the CYP19A1 gene (a) demon-strates a strong phylogenetic trend and (b) if its orthologousrelationship correlates to previously hypothesized mecha-nisms for human brain evolution.Organisms possess genotypes that permit deviations indevelopmental pathways in response to varying environ-mental conditions (Scoville & Pfrender, 2010). The mostcrucial aspect of the primate brain is neither size nor “exec-utive brain” volume (Reader & Laland, 2002, p. 4436).Because learning is directly tied to synaptic malleability(Blumenfeld-Katzir, Pasternak, Dagan, & Assaf, 2011),selection has focused on regulation of brain remodelingthrough development. The systems theory of autistogenesissuggests human brain evolution resulted in maximal pheno-typic plasticity, to accommodate multiform selective pres-sures without concurrent change in genetic conformation,yet liable to epigenetic and transcript-level expression reg-ulation (Malone, 2011d, 2012).A rapidly growing consensus indicates a system linkingthe neurodevelopmentally sensitive response to environmen-tal stimuli with the genetics of neuroinflammation combinesby guest on May 12, 2013sgo.sagepub.comDownloaded from
  6. 6. Malone 5to predispose ASD pathogenesis with male bias (Angelidouet al., 2012; Becker, 2012; Hu, 2013a, 2013b; James, 2008,p. 15; Malone, 2012; Rossignol & Frye, 2011), and altera-tions to one or more components within the system may initi-ate neurodegenerative feedback. Though both genes andenvironment seem necessary, neither appears independentlysufficient for ASD pathogenesis in the preponderance ofcases (James, 2008; Malone, 2012), a metabolic endopheno-type linking genes with environment is theorized (Angelidouet al., 2012; Becker, 2012; Hu, 2013a, 2013b; James, 2008;Malone, 2011c). This suggests that a predisposing geneticprofile could exist within an individual without developmen-tal disorder who did not receive environmental insult duringdevelopmentally sensitive periods (Angelidou et al., 2012;Hu, 2013a, 2013b; James, 2008; Malone, 2012). Likewise,this view suggests that an individual without a genetic bur-den could develop disorder under very great environmentalstress during the same early life stage (Angelidou et al.,2012; Hu, 2013a, 2013b; James, 2008; Malone, 2012).Malone (2011c) first hypothesized that CYP19A1 plays aprincipal role in brain plasticity and developmental disorderdue to more than a dozen known alleles, opportunities forsingle-nucleotide polymorphism influence, possible epigen-etic imprinting, miRNA regulation, and other forms of tran-script-level expression modification that may alterdevelopmental trajectories. Therefore, if CYP19A1 com-plexity trends with phylogeny and correlates strongly to pre-viously hypothesized drivers of human brain evolution, thesecond aim of this study is to answer whether the gene canprovide genetic accommodation specific to (a) brain region,(b) by gender, (c) across developmental stages, and (d) withbroad expression variability.MethodTo calculate orthologies (Kent et al., 2002), a multiz align-ment (Blanchette et al., 2004) of CYP19A1 from the February2009 (GRCh37/hg19) human assembly of the Genscan,Ensembl, RefSeq, and UCSC gene database was producedusing: chimpanzee (P. troglodytes, October 2010; CGSC2.1.3/panTro3); western lowland gorilla (G. gorilla gorilla,May 2011; Sanger Institute gorGor3.1/gorGor3); Sumatranorangutan (P. pygmaeus abelii, July 2007; WUGSC 2.0.2/ponAbe2); northern white-cheeked gibbon (N. leucogenys,January 2010; GGSC Nleu1.0/nomLeu1); rhesus macaque(M. mulatta, January 2006; MGSC Merged 1.0/rheMac2);common marmoset (C. jacchus, March 2009; WUGSC 3.2/calJac3); dolphin (T. truncates, February 2008; BroadInstitute turTru1); microbat (little brown bat; M. lucifugus,July 2010; Broad Institute Myoluc2.0/myoLuc2); megabat(large flying fox, P. vampyrus, July 2008; Broad InstitutepteVam1); African elephant (L. africana, July 2009; Broad/loxArf3), American opossum (M. domestica, October 2006;Broad/monDom5); platypus (O. anatinus, March 2007;WUGSC 5.0/ornAna1); chicken (G. gallus, May 2006;WUGSC 2.1/galGal3); anole lizard (A. carolinensis, May2010 (Broad AnoCar2.0/anoCar2); African clawed frog (X.tropicalis, November 2009 (JGI 4.2/xenTro3); sticklebackfish (G. aculeatus, February 2006; Broad/gasAcu1); lampreyeel (P. marinus, March 2007; WUGSC 3.0/petMar1).The above species provide a skeletal framework for thesubphylum Vertebrata, thus representing a foundation for anevolutionary perspective, with special emphasis on nonhu-man primates. A simple alignment of Neanderthal CYP19A1is determined to assess this unique gene in another species ofHomo as a limited form of test for internal validation. ANeanderthal CYP19A1 composite is produced from 6ANFO-mapped fossil samples (Feld1, Mez1, Sid1253,Vi33.16, Vi33.25, Vi33.26) aligned against the humangenome (Briggs et al., 2009; R. E. Green et al., 2010) usingthe UCSC Genome Browser (Blanchette et al., 2004;Karolchik et al., 2003; Kent, 2002; Kent et al., 2002; Stenzel,2009). Because modern Homo sapiens share a more recentcommon ancestor with Neanderthal than any nonhuman pri-mate, CYP19A1 should demonstrate organization nearlyidentical to the current human model, particularly if the genedemonstrates an evolutionary trend through the extant pri-mate lineage.Dunbar’s (1992) original model (Figure 3) presentedneocortex ratio (NCR) as an independent variable and groupsize as the dependent variable, stating that “the interest liesin the consequences of brain size” (p. 9). This perspectiveneglects environmental circumstances that may induce last-ing group size change regardless of brain development.Because, unlike Dunbar, this study is concerned with thecause of human brain evolution, NCR becomes theFigure 3. Dunbar’s original assessment of the impact of a largeneocortical ratio to social group size and complexity. The formulafor the fit line is provided Y = 0.8497X0.6442. The figure is adaptedwith permission and the primate groups are indicated following theoriginal schema: () nocturnal prosimians; (º) diurnal prosimians;(•) polygamous anthropoids; (†) monogamous anthropoids; (∆)hominoids on a logarithmic scale for each axis. Adapted fromNeocortex Size as a Constraint on Group Size in Primates (p. 478),by R. I. M. Dunbar, 1992, Kidlington, Oxford, UK, Elsevier Limited.Copyright 1992. Adapted with guest on May 12, 2013sgo.sagepub.comDownloaded from
  7. 7. 6 SAGE Opendependent variable and group size is one of the independentvariables for the purpose of the model. This study considersthat while growing through neurologically sensitive stageswithin an ever-dynamic social milieu (Rodseth, Wrangham,Harrigan, & Smuts, 1991; Sutcliffe, Dunbar, Binder, &Arrow, 2012), situated within an environment of limitedresources, selection (Wilson et al., 2011; Wrangham, 1993)operated on individual variability to propel primate brainevolution. Therefore, due to its contribution to plasticity,environmentally triggered patterns of neuronal remodeling,and modulation of gender typical social behavior, CYP19A1is a factor.What has become known as “Dunbar’s equation” is cor-rected with current information regarding orangutan(Rodman, 1993; Singleton & van Schaik, 2002; te Boekhorst,Schürmann, & Sugardjito, 1990; Utami, Goossens, Bruford,de Ruiter, & van Hooff, 2002) and gorilla (Yamagiwa,Kahekwa, & Basabose, 2003) range and social group disper-sion. Dunbar (1992) log-transformed all data due to curvilin-ear relationship between group size and NCR, and performedthe regression on reduced major axes as this provides great-est estimate of relation when errors are unknown, though thiscreates an added false visual sense of linearity (Figure 3).Those species previously described by Dunbar as existing ina group size of 1 are here considered as living in a socialgroup of 2+ as courtship and mating is assumed to be a com-plex social interaction (Schillaci, 2008) within local if notoverlapping environments.The ratio of neocortex volume to whole brain volume isthe dependent variable as it accounts for executive function,though it is easy to imagine a small primate evolving a NCRgreater than human, yet still in possession of a brain no largerthan a walnut. To fashion a more complete model, brain mass(Deaner, Isler, Burkart, & van Schaik, 2007; Dunbar &Shultz, 2007) is included so that neuronal density that varieswithin and between brain regions (C. E. Collins, Airey,Young, Leitch, & Kaas, 2010) and the scaling factor (Clark,Mitra, & Wang, 2001, Herculano-Houzel, 2009; Herculano-Houzel & Kaas, 2011) become a feature of the model. Thefemale body cavity delimits the general size of the fetus, andthe size of the female pelvis restricts the size of the neonatalbrain, so brain volume enables some accounting for generalbody size and encephalization quotient in primates (Deacon,1997; Jerison, 1973).Following species-specific data correction, SPSS v 18was used to perform a regression with NCR as the dependentvariable. Square root transformed group size and brain massdata (TGR and TBM, respectively) with CYP19A1 geneticorthology are independent variables. Unlike Dunbar (1992),the axes remain intact to prevent added visual impression oflinearity. Because visual interpretation of graphic analysissuggested a phylogenetic trend through vertebrate phylog-eny, with particular development in primates, a CDS FASTAalignment (Karolchik et al., 2003) output was produced fromnine primate species to derive the amino acid sequence align-ment against the February 2009 (GRCh37/hg19) humanCYP19A1 assembly. Amino acid sequence was chosen overnucleic acid because each transcriptome sequenced repre-sents an imaginary construct representing each species withno easy accounting for substitutions to synonymous codons.The BLAST-like alignment tool (BLAT; Kent, 2002) is usedto determine orthology.If it is established that CYP19A1 complexity does trendwith phylogeny and that it correlates strongly to previouslyhypothesized drivers of human brain evolution, then theUCSC Genome Browser (Kent, 2002) is used to align theEnsembl, Genscan, RefSeq, and UCSC Gene human genomedatabases against data from exon microarray expression inthe fetal brain (Johnson et al., 2009), histone mappingthrough brain development by gender (Cheung et al., 2010),TargetScan miRNA regulatory sites (Friedman, Farh, Burge,& Bartel, 2009; Grimson et al., 2007; Lewis, Burge, &Bartel, 2005), RNA transcription levels (ENCODE ProjectConsortium et al., 2011), brain DNA methylation (Maunakeaet al., 2010; Morin et al., 2008; Robertson et al., 2007), andthe presence of simple nucleotide polymorphisms (SNPs;Sherry et al., 2001). Assessment of CYP19A1 expressionand regulation from the above data provides evidence rela-tive to genetic accommodation specific to (a) brain region,(b) by gender, (c) across developmental stages, and (d) withbroad genetic variability.ResultsPhylogenetically, CYP19A1 does not fully organize untilplacental vertebrates (Figure 4) and appears to play a reason-ably comparable role whether bat, elephant, or dolphin, untilthe rise of Platyrrhini (New World monkeys) and Catarrhini(Old World monkeys and apes). Visual examination of themultiz alignment suggests that CYP19A1 begins to approxi-mate human conformation in primates, especially as all tis-sue-specific exons (Sebastian & Bulun, 2001) appear to alignwith gaps and start/stop sequences, but visual representationis deceptive as the130k nucleotide sequence is graphicallycompressed. Individual CYP19A1 orthology for the nine pri-mate species to current human data was determined (Table1). Furthermore, the Neanderthal CYP19A1 composite pro-duced by aligning the Feld1 Mez1 Sid1253 Vi33.16 Vi33.25Vi33.26 sequences (Briggs et al., 2009; R. E. Green et al.,2010) against the human genome through the UCSC GenomeBrowser (Blanchette et al., 2004; Karolchik et al., 2003;Kent, 2002; Kent et al., 2002; Stenzel, 2009) demonstratessimilarity to the current human model.The square root procedure is considered the most conser-vative transformation to use for curvilinear relationships(Mertler & Vannatta, 2010) and was applied to group size(TGR) and brain mass (TBM) but was not necessary forNCR or CYP19A1 orthology. The Mahalanobis distanceprocedure was used and the χ2critical value = 18.467, df = 4indicates no outliers. A regression was produced using NCRas the dependent variable. The independent variables includeTGR, TBM, and CYP19A1 orthology as an estimate forby guest on May 12, 2013sgo.sagepub.comDownloaded from
  8. 8. Malone 7Figure 4. Alignment of CYP19A1 with 21 vertebrate species to the human genome. The dashed lines indicate regions identified astranscripts that allow for tissue specific expression: 1. Placenta major, 2. Placenta minor 2, 3. Skin & Adipose tissues, 4. Fetal tissues, 5. Brain,6. Placenta minor 1, 7. Ovary and Breast Cancer, Endometriosis, and Bone, 8. Aromatase enzyme. CYP19A1 organization does not follow atrend in elephant, microbat (the vision dependent megabat is provided for contrast), dolphin, or the prosimians, but expands and unifies inmonkeys and finally appears on the same chromosome in apes. Upward signals from the selective sweep scan indicate those sections withgreater Neanderthal specificity, while downward signals are suggestive of positive selection in early humans (Green et al., 2010).Table 1.  CYP19A1 Orthology for Nine Key Primate Species With the Current Human Genome Sequence.Common name Species % orthologous NCR Group no.Chimpanzee P. troglodytes .9981 3.22 53.5Western lowland gorilla G. gorilla gorilla .9962 2.65 17.0Sumatran orangutan P. pygmaeus abelii .9886 2.47 5.0Hamadryas baboon P. hamadryas .9791 2.76 51.2Rhesus macaque monkey M. mulatta .9733 2.60 39.6Common marmoset C. jacchus .9339 1.52 8.5Philippine tarsier T. syrichta .8582 1.09 2.0Gray mouse lemur M. murinus .8668 1.23 9.5Northern greater galago O. garnettii .8820 0.94 2.0evolutionary trend toward increased phenotypic plasticity.Most methods yield the same slope estimates when R2> .9(Mertler & Vannatta, 2010) and the linear regression wasproduced, R2= .994, adjusted R2= .989, F(3, 5) = 143.758,p < .001, two-tailed (Figure 5) using SPSS v 18. This modelaccounts for 99% of variance in primate brain evolutionby guest on May 12, 2013sgo.sagepub.comDownloaded from
  9. 9. 8 SAGE Openwithout threat of multicollinearity as the variance inflationfactor for all variables is below 10 and all collinearity toler-ance statistics are above 0.1 (Mertler & Vannatta, 2010;O’Brien, 2007). A reaction surface (Wu et al., 2007; Yap,Yao, Das, Li, & Wu, 2011) of TGR, TBM, and NCR onCYP19A1 is produced using MS Excel®(Figure 6) that illus-trates significant changes from prosimians, to monkey, andfinally to great apes.It is clear that CYP19A1 has increased in size and com-plexity in a way that trends with phylogeny and strongly cor-relates to previous models describing human brain evolution.Data from exon microarray expression (Johnson et al., 2009)demonstrate that within the fetal brain, regions otherwiseconsidered key for tissue-specific transcription become fun-damental aspects of fine regulation in at least 13 regions ofthe brain and for both hemispheres (Figure 7). Histone map-ping provides evidence of regulation through developmentalstages by gender, and the data sets (Figure 8) appear to vali-date previous hypotheses (Cheung et al., 2010; Malone,2012). Seven-nucleotide seed targets (CYP19A1: miR-539,ATTTCTCA,score:65andCYP19A1:let-7/98,CTACCTCA,score: 98) were detected (Figure 8) within all known miRNAfamilies conserved across mammals from multiz alignments(Friedman et al., 2009; Lewis et al., 2005) and assigned scoresbased on context (Grimson et al., 2007).RNA transcription levels (ENCODE Project Consortiumet al., 2011) from seven cell lines (lymphoblastoid, embry-onic stem cell, human skeletal muscle myoblasts, humanumbilical vein endothelial cells, human erythromyeloblas-toid leukemia cells, normal human epidermal keratinocytes,and normal human lung fibroblasts) suggest greater degreesof regulation than previously specified (Figure 8) bySebastian and Bulun (2001). Regulation of alternative pro-moters by tissue-specific DNA methylation (Figure 8) wasdetermined and MRE-seq, MeDIP-seq, H3K4me3 ChIP-seq, RNA-seq and RNA-seq (SMART) libraries weresequenced (Maunakea et al., 2010; Morin et al., 2008;Robertson et al., 2007) using data available through NationalCenter for Biotechnology Information (Accession NumberSRP002318).Single nucleotide polymorphisms, small insertions, anddeletions with at least 0.01 minor allele frequencies weredetermined in an attempt to isolate common variants in thegeneral population (Sherry et al., 2001) relative to UCSC andGenscan gene databases. Taken together, the above data setsappear to validate another study (C. E. Collins et al., 2010),and provides strong evidence that CYP19A1 demonstratesthe capacity for genetic accommodation (a) specific to indi-vidual brain regions, (b) by gender, (c) across all develop-mental stages, and with (d) broad variability previouslyhypothesized (Malone, 2012).DiscussionEvolutionary biology must inform evolutionary psychologyif it is to contribute to the study of development and its disor-der. For some species, genetic accommodation is the pheno-type upon which selection critically operates. The evolutionof myriad regulatory mechanisms on primate brain develop-ment permits wide ranging synaptic reorganization inresponse to as many ecotypes. Thus, epigenetic tuning ofinfant genotype expression, and a plastic response to stimuliduring stages of developmental sensitivity, may result in abroad spectrum of phenotypes from the same genotype. Therichness or paucity of environmental stimuli defines an eco-type’s character; stimulus type, duration, and intensitydescribe its potential for influence; yet the individual’s phe-Figure 5.  The SPSS v.18 normal P-P plot of regressionstandardized residuals. Neocortex ratio is the dependent variable,with CYP19A1 orthology, group size, and total brain mass asindependent variables. The expected cumulative probabilityrepresents the model R2= .994, and the X-axis illustrates thecumulative probability observed in nature for each species.Figure 6 The reaction surface for group size (TGR), total brainmass (TBM), or neocortex ratio (NCR) suggests little overallimpact on CYP19A1 in prosimians but it is substantial in the greatapes. This reaction surface illustrates some of the phenotypicvariation generated when genetically diverse individuals of thesame or related species encounter and adapt to variform guest on May 12, 2013sgo.sagepub.comDownloaded from
  10. 10. Malone 9notypic plasticity, as modified by gender and age of expo-sure, will modify the consequences.Unfortunately, great phenotypic plasticity is expensivebecause it requires multiple overlapping systems operatingin concert. The only gene capable of so broadly influencingthe human brain’s malleable periods of cognitive, emotional,and social sensitivity with gender bias in health and disorderis CYP19A1. This work presents a new framework toapproach many forms of developmental disorder and offersnew hope to those suffering many pervasive forms.Furthermore, by assessing tissue- and site-specific expres-sion regulation through techniques such as histone mapping,identification of allelic differences, miRNA characterization,and accurate accounting of meaningful polymorphisms (seeAnthoni et al., 2012) true biological assay and molecularroutes to treatment appear well within reach. Detailing eachsite-specific regulatory phase for CYP19A1 may reveal alarge pool of data to illuminate the genesis of developmental,mood, and personality disorders in every stage of life.Histones may be thought of as molecular spools aroundwhich tightly wound DNA is wrapped to pack the almost2-m strand into a single cell. When an aspect of the genomeis actively used, it must unwind from the histone, and so his-tone mapping seeks to label regions where genetic expres-sion is active and potentially modified in some way.Transcription levels may be altered by normal cell mecha-nisms, and by chemicals from elsewhere in the body, such ascertain nutrients or toxins. Depending upon the importanceFigure 7.  Exon expression by brain region. Consolidated, and then expanded for visualization, the exon microarray expression datafrom 13 brain regions of late mid-fetal human brains are grouped by regional mean as log-ratios. CYP19A1 regulation occurs throughoutfetal and neonatal development, influences learning through its impact on brain plasticity, and is linked to developmental disorders due toits direct and indirect regulation of neuroprotective mechanisms and the neuroinflammatory guest on May 12, 2013sgo.sagepub.comDownloaded from
  11. 11. 10 SAGE Openand complexity of the gene, a wide range of phenotypic pro-files arise from histone transcription regulation, and it is sat-isfying to find that histone mapping of CYP19A1 appears tovalidate several previous studies (Kritzer, 2006; Luine et al.,2003; Ma et al., 1993; McCarthy, 2008; Rasmussen et al.,1990). Because many of the techniques described in thiswork can be performed with formaldehyde-preserved tis-sues, it is now feasible to track the evolution of site-specificregulatory mechanisms with fine detail across all brainregions and throughout the entire chordate phylum.The miRNA data presented (Figure 8) suggest that pri-mary expression regulation of P450arom gene in placentaoccurs at the level of transcription and the tissue-specificregion is conserved throughout the mammalian class(Helgen, 2011). It is perhaps important to note that thesame tissue-specific transcript carries the weight ofNeanderthal-specific deviation (Figure 4). It is reasonableto suggest Neanderthal experienced no difference inexpression, due to synonymous substitutions and equiva-lent amino acid variations, but this could representmaternal reproductive adaption in response to dietary DHAavailability. Human CYP19A1 transcription levels arehighest in regions dedicated to reproductive tissues and thebrain (Figure 8), and these areas show positive selection inearly humans (Figure 4).Increased gyral white matter in the human prefrontal cor-tex (PFC) suggests selection in primates for risk assessment,emotional restraint, attention maintenance, meta-awareness,working memory, imitative learning, goal-directed behavior,communication (including use of gaze), and decision making(Barth, Reaux, & Povinelli, 2005; Beran & Evans, 2006;Boesch, 1993, 1996; Casey, Galvan, & Hare, 2005; Casey,Tottenham, Liston, & Durston, 2005; Caviness, Kennedy,Richelme, Rademacher, & Filipek, 1996; Courchesne et al.,2000; Evans & Beran, 2007a, 2007b; Giedd et al., 1999;Jurado & Rosselli, 2007; Lenroot & Giedd, 2006; Miller,2000; Miller & Cohen, 2001; Müller, Radtke & Wissing,2002; Suddendorf & Whiten, 2001; Voytek & Knight, 2010;Xi et al., 2011). Though ascribing a “reason” for some trait toevolve is often problematic, these data seem to correlate withFigure 8.  Fine regulation of CYP19A1 by gender, across lifetime developmental stages, as detected by histone mapping, miRNA regulation,transcription level, cytosine-guanine (CG) methylation, and known simple nucleotide polymorphisms (SNPs). This degree of regulationis necessary because CYP19A1 transforms testosterone into neuroprotective estradiol and coordinates the conversion of omega-3 fattyacids into DHA while competitively inhibiting proinflammatory AA. Axonal elongation, myelination, neurite outgrowth, arborization,synaptogenesis, generation of neuroprotectin D1, inhibition of apoptosis, and targeted physiological debridement are thus modulated byCYP19A1 with extreme guest on May 12, 2013sgo.sagepub.comDownloaded from
  12. 12. Malone 11(a) increased DHA production in mammary tissues (Caspi etal., 2007; Lammi-Keefe, Rozowski, Parodi, Sobrevia, &Foncea, 2008), (b) increased DHA uptake by the placenta(Campbell, Gordon, & Dutta-Roy, 1996; Dutta-Roy, 2000),(c) both of which are required for proportionally thickercortical white matter in the growing human brain (Allmanet al., 1993; Allman, Hakeem, & Watson, 2002; Smaers,Schleicher, Zilles, & Vinicius, 2010).For many decades, the common approach to genetics wasto study artificially induced and naturally occurring muta-tions as a means to understand normal gene expression. Thisauthor asserts that as great phenotypic plasticity is the pri-mary character trait selected for, the search for genes linkedto developmental disorder that also demonstrate phyloge-netic trends in orthology will reveal those genes most criticalto human brain evolution. This author is currently assessinggenes known linked to human brain development and disor-der to determine what may be the core genomic set respon-sible for human brain evolution (preliminary results providedin Table 2). Those genes demonstrating higher orthology fur-ther from primates specifically, and toward placental mam-mal, marsupial, monotreme, reptile, and so on provideestimation for when in evolution those genes became mostselectively advantageous. It is important to point out that theFOXP2 and HOX genes did not display strong positiveorthologous correlation, suggesting that while these geneswere important to the evolution of a central nervous system,they did not play a central role in human brain evolutionspecifically.Authors’ NoteRaw data for the exon microarray expression may be obtainedthrough the NCBI Gene Expression Omnibus All in silico hybridizations, histone mapping, DNAmethylation assessment, and assessment of CYP19A1 SNPs wereprocessed using the UCSC Genome Browser on Human February2009 (GRCh37/hg19) Assembly, the UCSC, Ensembl, Genscan,and RefSeq databases, and ENCODE data.Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respectto the research, authorship, and/or publication of this article.FundingThe author(s) received no financial support for the research and/orauthorship of this article.Table 2.  Preliminary Results Using the Orthology Correlation Technique on 158 Genes.Demonstrates positive correlation Little to no positive correlationADH5, ADORA1, ADORA1, ADORA2A, ACHE, APBB1, ASCL1, BMP4, BMP4,AF361886, ALK, APBB1, APOE, APP, CACNA1G*, CDH9*, CDH10*,ARTN, BCL2, BDNF, BDNF, BMP2, NTNAP2*, EN2*, FADS2, FOXP2*,BMP8B, CDK5RAP2, CHRM2, CREB1, GABRA4*, GABRB3*, GSTP1*,CTH, CXCL1, CYP19A1, DCX, DISC1, HOXA1*, HOXB1*, MAFG, MAFK,DISC2, DLG4, DLL1, DNAJC3, DRD2, MAPK3*, MDK, MDK, MECP2*, MET*,DRD2, DVL3, E2F1, E2F8, EFNB1, NDN, NEUROG1, NLGN3*, NRXN1*,EGF, EIF2AK3, EIF2S1, EP300, ERBB2, OLIG2, OXTR*, POU4F1, POU4F1,ESR1, FADD, FADS1, FADS3, FADS6, PRKCB1*, PRL*, PRLR*, RELN*,FGF2, FLNA, GDNF, GLO2, GLRX, ROBO1, SERT*, SHANK3*,GLRX3, GPI, GRIN1, HAGH, HDAC4, SLC25A12*, SLC6A4*, SOX2, SOX8,HDAC4, HES1, HEY1, HEY2, HEYL, IL3, TPH1, TPH2, TRVP2, TRVP4, UBE3A*KEAP1, LONRF1, LONRF2, LONRF3,  MAP2, MEF2C, MET, MLL, NDN, NDP,  NEUROD1, NEUROG2, NF1, NFE2L2,  Nf-kB, NOG, NOTCH1, NOTCH2,  NR2E3, NRCAM, NRG1, NRP1, NRP2,  NTF3, NTN1, ODZ1, OLIG2,  PAFAH1B1, PARD3, PAX3, PAX5,  PAX6 PSMB5, PTN, RAC1, RTN4,  S100A6, S100B, S74017, SHH, SLIT2,  SOD1, STAT3, TFB1M, TFB2M, TGFB1,  TH, TNR, TRPV1, TRPV3, TRPV5,  TRPV6, VEGFA  Note: More than two dozen genes listed above were previously considered linked to developmental disorders, including autism, and are labeled with anasterisk (*). It is important to understand that pathology purely due to genetics is considered a disease and not a disorder, and while each of those listedmay induce a disease with behavioral characters strikingly similar to those diagnostic of autism spectrum disorders, they seldom explain any aspect of thegender bias, the influence of environmental stimuli, and never both guest on May 12, 2013sgo.sagepub.comDownloaded from
  13. 13. 12 SAGE OpenReferencesAbramovich, D., & Rowe, P. (1973). Foetal plasma testosteronelevels at mid-pregnancy and at term: Relationship to foetalsex. Journal of Endocrinology, 56, 621-622. doi:10.1677/joe.0.0560621Ahlquist, D. A., Duenes, J. A., Madson, T. H., Romero, J. C.,Dozois, R., & Malagelada, J. R. (1982). Prostaglandin gen-eration from gastroduodenal mucosa: Regional and speciesdifferences. Prostaglandins, 24, 115-125. doi:10.1016/0090-6980(82)90183-6Aiello, L. C., & Wheeler, P. (1995). The expensive tissue hypoth-esis: The brain and the digestive system in human and primateevolution. Current Anthropology, 36, 199-221.Ainsworth, M. D. S. (1969). Object relations, dependency, andattachment: A theoretical review of the infant-mother relation-ship. Child Development, 40, 969-1025. Retrieved from, M. D. S., Blehar, M. C., Waters, E., & Wall, S. (1978).Patterns of attachment: A psychological study of the strangesituation. Hillsdale, NJ: Erlbaum.Allman, J. M., Hakeem, A., & Watson, K. (2002). Two phyloge-netic specializations in the human brain. Neuroscientist, 8,335-346.Allman, J. M., McLaughlin, T., & Hakeem, A. (1993). Brain struc-tures and life-span in primate species. Proceedings of theNational Academy of Sciences of the United States of America,90, 3559-3563. doi:10.1073/pnas.90.8.3559Angelidou, A., Asadi, S., Alysandratos, K. D., Karagkouni, A.,Kourembanas, S., & Theoharides, T. C. (2012). Perinatal stress,brain inflammation and risk of autism—Review and proposal.BMC Pediatrics, 12(1), 89. doi:10.1186/1471-2431-12-89.Anthoni, H., Sucheston, L. E., Lewis, B. A., Tapia-Paez, I., Fan,X., Zucchelli, M., & . . .Kere, J. (2012). The aromatase geneCYP19A1: Several genetic and functional lines of evidencesupporting a role in reading, speech, and language. BehavioralGenetics, 42, 509-527. doi:10.1007/s10519-012-9532-3Arai, Y., Sekine, Y., & Murakami, S. (1996). Estrogen and apop-tosis in the developing sexually dimorphic preoptic area infemale area in female rats. Neuroscience Research, 25, 403-407. doi:10.1016/0168-0102(96)01070-XArmstrong, E. (1985). Relative brain size in monkeys and prosimi-ans. American Journal of Physical Anthropology, 66, 263-273.doi:10.1002/ajpa.1330660303Azcoitia, I., Arevalo, M. A., De Nicola, A. F., & Garcia-Segura,L. M. (2011). Neuroprotective actions of estradiol revis-ited. Trends in Endocrinology & Metabolism, 22, 467-473.doi:10.1016/j.tem.2011.08.002Bard, K. A. (2012). Emotional engagement: How chimpanzeesminds develop. In F. De Waal & P. Ferrari (Eds.), The primatemind: Built to connect with other minds (pp. 1-28). Cambridge,MA: Harvard University Press. Retrieved from, K. A., & Gardner, K. H. (1996). Influences on developmentin infant chimpanzees: Enculturation, temperament, and cog-nition. In A. E. Russon, K. A. Bard, & S. T. Parker (Eds.),Reaching into thought: The minds of the great apes (pp. 235-256). Cambridge, UK: Cambridge University Press.Barth, J., Reaux, J. E., & Povinelli, D. J. (2005). Chimpanzees’(Pantroglodytes) use of gaze cues in object-choice tasks: Differentmethods yield different results. Animal Cognition, 8, 84-92.doi:10.1007/s10071-004-0235-xBarton, R. A. (1996). Neocortex size and behavioural ecology in pri-mates. Proceedings of the Royal Society of London, BiologicalSciences, 263, 173-177. doi:10.1098/rspb.1996.0028Bastarache, J. A., Diamond, J. M., Kawut, S. M., Lederer, D. J.,Ware, L. B., & Christie, J. D. (2012). Postoperative estradiollevels associate with development of primary graft dysfunctionin lung transplantation patients. Gender Medicine, 9, 154-165.doi:10.1016/j.genm.2012.01.009Bastian, M. L., Sponberg, A. C., Suomi, S. J., & Higley, J. D.(2003). Long-term effects of infant rearing condition on theacquisition of dominance rank in juvenile and adult rhesusmacaques (Macaca mulatta). Developmental Psychobiology,42, 44-51. doi:10.1002/dev.10091Bechlioulis, A., Naka, K. K., Kalantaridou, S. N., Kaponis, A.,Papanikolaou, O., Vezyraki, P., & . . . Michalis, L. K. (2012).Increased vascular inflammation in early menopausal womenis associated with hot flush severity. Journal of ClinicalEndocrinology & Metabolism, 97, E760-E764. doi:10.1210/jc.2011-3151Becker, K. G. (2012). Male gender bias in autism and pediatric auto-immunity. Autism Research, 5, 77-83. doi:10.1002/aur.1227Belsky, J., & de Haan, M. (2011). Annual research review:Parenting and children’s brain development: The end of thebeginning. Journal of Child Psychology and Psychiatry, 52,409-428. doi:10.1111/j.1469-7610.2010.02281.xBeran, M. J., & Evans, T. A. (2006). Maintenance of delay of grati-fication by four chimpanzees (Pan troglodytes): The effectsof delayed reward visibility, experimenter presence, andextended delay intervals. Behavioural Processes, 73, 315-324.doi:10.1016/j.beproc.2006.07.005Beyer, C. (1999). Estrogen and the developing mammalian brain.Anatomy and Embryology, 199, 379-390. doi:10.1007/s004290050236Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F.,Roskin, K. M., & . . . Miller, W. (2004). Aligning multiplegenomic sequences with the threaded blockset aligner. GenomeResearch, 14, 708-715. doi:10.1101/gr.1933104Blaylock, R. L., & Strunecka, A. (2009). Immune-glutamatergicdysfunction as a central mechanism of the autism spec-trum disorders. Current Medicinal Chemistry, 16, 157-170.doi:10.2174/092986709787002745Blumenfeld-Katzir, T., Pasternak, O., Dagan, M., & Assaf, Y.(2011). Diffusion MRI of structural brain plasticity induced bya learning and memory task. PLoS ONE, 6, 1-9. doi:10.1371/journal.pone.0020678Boesch, C. (1993). Towards a new image of culture in wildchimpanzees? Behavioral and Brain Sciences, 16, 514-515.doi:10.1017/S0140525X00031277Boesch, C. (1996). Three approaches for assessing chimpanzeeculture. In A. E. Russon, K. A. Bard, & S. T. Paker (Eds.),Reaching into thought: The minds of the great apes (pp. 404-429). Cambridge, UK: Cambridge University Press.Bölte, S., Hubl, D., Feineis-Matthews, S., Pruvulovic, D., Dierks,T., & Poustka, F. (2006). Facial affect recognition trainingin autism: Can we animate the fusiform gyrus? BehavioralNeuroscience, 120, 211-216. doi:10.1037/0735-7044.120.1.21by guest on May 12, 2013sgo.sagepub.comDownloaded from
  14. 14. Malone 13Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. NewYork, NY: Basic Books.Bowlby, J. (1988). A secure base: Clinical applications of attach-ment theory. London, England: Routledge.Brent, L., Lee, D. R., & Eichberg, J. W. (1989). The effects ofsingle caging on chimpanzee behavior. Laboratory AnimalScience, 39, 345-346.Bretherton, I. (1992). The origins of attachment theory: JohnBowlby and Mary Ainsworth. Developmental Psychology, 28,759-775.Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T.,Stenzel, U., & . . . Pääbo, S. (2009). Targeted retrieval andanalysis of five Neandertal mtDNA genomes. Science, 325,318-321. doi:10.1126/science.1174462Brüne, M., Brüne-Cohrs, U., McGrew, W. C., & Preuschoft, S.(2006). Psychopathology in great apes: Concepts, treatmentoptions and possible homologies to human psychiatric disor-ders. Neuroscience & Biobehavioral Reviews, 30, 1246-1259.doi:10.1016/j.neubiorev.2006.09.002Burdge, G. C., Jones, A. E., & Wootton, S. A. (2002).Eicosapentaenoic and docosapentaenoic acids are the principalproducts of α-linolenic acid metabolism in young men. BritishJournal of Nutrition, 88, 355-363. doi:10.1079/BJN2002662Byrne, R. W., & Corp, N. (2004). Neocortex size predicts decep-tion rate in primates. Proceedings of the Royal Society ofLondon, Biological Sciences, 271, 1693-1699. doi:10.1098/rspb.2004.2780Call, J., & Tomasello, M. (1998). Distinguishing intentional actsfrom accidental actions in orangutans (Pongo pygmaeus),chimpanzees (Pan troglodytes), and human children (Homosapiens). Journal of Comparative Psychology, 112, 192-206.doi:10.1037/0735-7036.112.2.192Campbell, F. M., Gordon, M. J., & Dutta-Roy, A. K. (1996).Preferential uptake of long chain polyunsaturated fatty acids byisolated human placental membranes. Molecular and CellularBiochemistry, 155, 77-83. doi:10.1007/BF00714336Capitanio, J. P., Mendoza, S. P., Mason, W. A., & Maninger, N.(2005). Rearing environment and hypothalamic-pituitary-adrenal regulation in young rhesus monkeys (Macaca mulatta).Developmental Psychobiology, 46, 318-330. doi:10.1002/dev.20067Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cere-bral functional organization during cognitive development.Current Opinion in Neurobiology, 15, 239-244. doi:10.1016/j.conb.2005.03.012Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005).Imaging the developing brain: What have we learned aboutcognitive development? Trends in Cognitive Sciences, 9, 104-110. doi:10.1093/cercor/bhh129Caspi, A., Williams, B., Kim-Cohen, J., Craig, I. W., Milne, B.J., Poulton, R., & . . . Moffitt, T. E. (2007). Moderation ofbreastfeeding effects on the IQ by genetic variation in fattyacid metabolism. Proceedings of the National Academy ofSciences of the United States of America, 104, 18860-18865.doi:10.1073/pnas.0704292104Caviness, V. S., Kennedy, D. N., Richelme, C., Rademacher, J. F.P.A., & Filipek, P. A. (1996). The human brain age 7-11 years:A volumetric analysis based on magnetic resonance images.Cerebral Cortex, 6, 726-736. doi:10.1093/cercor/6.5.726Chakrabarti, S., & Davidge, S. T. (2013). Estradiol modulatestumor necrosis factor-induced endothelial inflammation:Role of tumor necrosis factor receptor 2. Journal of VascularResearch, 50, 21-34. doi:10.1159/000342736Chen, F. S., & Johnson, S. C. (2012). An oxytoxin receptor genepredicts attachment anxiety in females and autism-spectrumtraits in males. Social Psychological and Personality Science,3, 93-99. doi:10.1177/1948550611410325Chen, S. A., Besman, M. J., Sparkes, R. S., Zollman, S., Klisak, I.,Mohandas, T., & . . .Shively, J. E. (1988). Human aromatase:CDNA cloning, Southern blot analysis, and assignment of thegene to chromosome 15. DNA, 7, 27-38.Cherrier, M., Matusmoto, A., Amory, J., Johnson, M., Craft, S.,Peskind, E. R., & Raskind, M. A. (2007). Characterizationof verbal and spatial memory changes from moderate to sup-raphysiological increases in testosterone in healthy oldermen. Psychoneuroendocrinology, 32, 72-79. doi:10.1016/j.psyneuen.2006.10.008Cheung, I., Shulha, H. P., Jiang, Y., Matevossian, A., Wang, J.,Weng, Z., & Akbarian, S. (2010). Developmental regulationand individual differences of neuronal H3K4me3 epigenomesin the prefrontal cortex. Proceedings of the National Academyof Sciences of the United States of America, 107, 8824-8829.doi:10.1073/pnas.1001702107Choudhury, P. R., Lahiri, S., & Rajamma, U. (2012). Glutamatemediated signaling in the pathophysiology of autism spectrumdisorders. Pharmacology, Biochemistry and Behavior, 100,841-849. doi:10.1016/j.pbb.2011.06.023Clark, D. A., Mitra, P. P., & Wang, S. S.-H. (2001). Scalablearchitecture in mammalian brains. Nature, 411, 189-193.doi:10.1038/35075564Clay, A. W. (2012). Attachment and early rearing: Longitudinaleffects in chimpanzees (Pan troglodytes) (Unpublished doc-toral dissertation). Retrieved from, T. H., & Harvey, P. H. (1980). Primates,brains and ecology. Journal of Zoology, 190, 309-323.doi:10.1111/j.1469-7998.1980.tb01430.xCollins, C. E., Airey, D. C., Young, N. A., Leitch, D. B., & Kaas,J. H. (2010). Neuron densities vary across and within corti-cal areas in primates. Proceedings of the National Academy ofSciences of the United States of America, 107, 15927-15932.doi:10.1073/pnas, 1010356107Collins, S. M., Surette, M., & Bercik, P. (2012). The interplaybetween the intestinal microbiota and the brain. Nature ReviewsMicrobiology, 10, 735-742. doi:10.1038/nrmicro2876Conti, G., Hansman, C., Heckman, J. J., Novak, M. F., Ruggiero,A., & Suomi, S. J. (2012). Primate evidence on the late healtheffects of early-life adversity. Proceedings of the NationalAcademy of Sciences of the United States of America, 109,8866-8871. doi:10.1073/pnas.1205340109Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A.,Covington, J., Egaas, B., & . . . Press, G. A. (2000). Normalbrain development and aging: Quantitative analysis at in vivoMR imaging in healthy volunteers1. Radiology, 216, 672-682.Retrieved from, D. L., Ashwood, P., Fasano, A., Fuchs, G., Geraghty, M.,Kaul, A., . . . Jones, N. E. (2012). Gastrointestinal conditions inby guest on May 12, 2013sgo.sagepub.comDownloaded from
  15. 15. 14 SAGE Openchildren with autism spectrum disorder: Developing a researchagenda. Pediatrics, 130(Suppl. 2), S160-S168. doi:10.1542/peds.2012-0900NDavenport, R. K. (1979). Some behavioral disturbances of greatapes in captivity. In D. A. Hamburg & E. R. McCown (Eds.),The great apes (pp. 341-357). Menlo Park, CA: BenjaminCummings.Davenport, R. K., & Menzel, E. W. (1963). Stereotyped behaviorof the infant chimpanzee. Archives of General Psychiatry, 8,99-104.Davenport, R. K., & Rogers, C. M. (1970). Differential rearing ofthe chimpanzee: A project survey. In G. H. Bourne (Ed.), Thechimpanzee (Vol. 3, pp. 337-360). Baltimore, MD: UniversityPark Press.Davenport, R. K., Rogers, C. M., & Rumbaugh, D. M. (1973).Long-term cognitive deficits in chimpanzees associated withearly impoverished rearing. Developmental Psychology, 9,343-347. doi:10.1037/h0034877Deacon, T. W. (1997). The symbolic species: The co-evolution oflanguage and the brain. New York, NY: W. W. Norton.Deaner, R. O., Isler, K., Burkart, J., & van Schaik, C. (2007). Overallbrain size, and not encephalization quotient, best predicts cog-nitive ability across non-human primates. Brain, Behavior andEvolution, 70, 115-124. doi:10.1159/000102973De Bellis, M. D., & Kuchibhatla, M. (2006). Cerebellar volumesin pediatric maltreatment-related posttraumatic stress disor-der. Biological Psychiatry, 60, 697-703. doi:10.1016/, M. C. (1991). Environmental influences on the youngbrain. In K. R. Gibson & A. C. Peterson (Eds.), Brain matura-tion and cognitive development (pp. 107-124). New York, NY:Aldine De Gruyter.Douin-Echinard, V., Calippe, B., Billon-Galès, A., Fontaine, C.,Lenfant, F., Trémollières, F., . . . Gourdy, P. (2011). Estradioladministration controls eosinophilia through estrogen receptor-αactivation during acute peritoneal inflammation. Journal ofLeukocyte Biology, 90, 145-154. doi:10.1189/jlb.0210073Dunbar, R. I. M. (1992). Neocortex size as a constraint on group-size in primates. Journal of Human Evolution, 22, 469-493.doi:10.1016/0047-2484(92)90081-JDunbar, R. I. M. (1998). The social brain hypothesis. EvolutionaryAnthropology, 6, 178-190. doi:10.1002/(SICI)1520-6505Dunbar, R. I. M. (2010). Brain and behavior in primate evolution. InP. M. Kappeler & J. B. Silk (Eds.), Mind the gap: Tracing theorigins of human universals (pp. 319-502). London, England:Springer.Dunbar, R. I. M., & Shultz, S. (2007). Understanding primate brainevolution. Philosophical Transactions of the Royal Society,Biological Sciences, 362, 649-658. doi:10.1098/rstb.2006.2001Dutta-Roy, A. K. (2000). Transport mechanisms for long-chainpolyunsaturated fatty acids in the human placenta. AmericanJournal of Clinical Nutrition, 71, 315s-322s. Retrieved from Project Consortium, Myers, R. M., Stamatoyannopoulos,J., Snyder, M., Dunham, I., Hardison, R. C., & . . . Searle, S.(2011). A user’s guide to the encyclopedia of DNA elements(ENCODE). PLoS Biology, 9, e1001046. doi:10.1371/journal.pbio.1001046Evans, T. A., & Beran, M. J. (2007a). Chimpanzees use self-distraction to cope with impulsivity. Biology Letters, 3, 599-602. doi:10.1098/rsbl.2007.0399Evans, T. A., & Beran, M. J. (2007b). Delay of gratification anddelay maintenance by rhesus macaques (Macaca mulatta).Journal of General Psychology, 134, 199-216. doi:10.3200/GENP.134.2.199-216Ferdowsian, H. R., Durham, D. L., Kimwele, C., Kranendonk, G.,Otali, E., Akugizibwe, T., . . .Johnson, C. M. (2011). Signs ofmood and anxiety disorders in chimpanzees. PLoS One, 6, 1-11. doi:10.1371/journal.pone.0019855Fitch,R.H.,&Denenberg,V.H.(1998).Aroleforovarianhormonesin sexual differentiation of the brain. Behavioral and BrainSciences, 21, 311-352. doi:10.1017/S0140525X98001216Foley, R. A., Lee, P. C., Widdowson, E. M., Knight, C. D., &Jonxis, J. H. P. (1991). Ecology and energetics of encephaliza-tion in hominid evolution. Philosophical Transactions of theRoyal Society, Biological Sciences, 334, 223-232. doi:10.1098/rstb.1991.0111Forest, M. G., Sizonenko, P. C., Cathiard, A. M., & Bertrand, J.(1974). Hypophyso-gonadal function in humans during the firstyear of life. I. Evidence for testicular activity in early infancy.Journal of Clinical Investigation, 53, 819-828. doi:10.1172/JCI107621Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009).Most mammalian mRNAs are conserved targets of microRNAs.Genome Research, 19, 92-105. doi:10.1101/gr.082701.108Frye, R. E., Melnyk, S., & MacFabe, D. F. (2013). Unique acyl-carnitine profiles are potential biomarkers for acquired mito-chondrial disease in autism spectrum disorder. TranslationalPsychiatry, 3, e220. doi:10.1038/tp.2012.143Fukudome, Y., Tabata, T., Miyoshi, T., Haruki, S., Araishi, K.,Sawada, S., & Kano, M. (2003). Insulin-like growth factor-I as a promoting factor for cerebellar Purkinje cell develop-ment. European Journal of Neuroscience, 17, 2006-2016.doi:10.1046/j.1460-9568.2003.02640.xGarcia-Segura, L. M. (2008). Aromatase in the brain: Not just forreproduction anymore. Journal of Neuroendocrinology, 20,705-712. doi:10.1111/j.1365-2826.2008.01713.xGiedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu,H., Zijdenbos, A., & . . . Rapoport, J. L. (1999). Brain develop-ment during childhood and adolescence: A longitudinal MRIstudy. Nature Neuroscience, 2, 861-863. doi:10.1038/13158Giltay, E. J., Gooren, L. J. G., Toorians, A. W. F.T., Katan, M. B.,& Zock, P. L. (2004). Docosahexanoic acid concentrations arehigher in women than in men because of estrogenic effects.American Journal of Clinical Nutrition, 80, 1167-1174.Retrieved from, J. (1986). The chimpanzees of Gombe: Patterns of behav-ior. Cambridge, MA: Belknap Press.Green, P., & Yavin, E. (1998). Mechanisms of arachidonic acid andDocosahexanoic acid accretion in the fetal brain. Journal ofNeuroscience Research, 52, 129-136. doi:10.1002/(SICI)1097-4547(19980415)52:2<129::AID-JNR1>3.0.CO;2-C7Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U.,Kircher, M., & . . . Mullikin, J. C. (2010). A draft sequence ofthe Neandertal genome. Science, 328, 710-722. doi:10.1126/science.1188021by guest on May 12, 2013sgo.sagepub.comDownloaded from
  16. 16. Malone 15Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim,L. P., & Bartel, D. P. (2007). MicroRNA targeting specific-ity in mammals: Determinants beyond seed pairing. MolecularCell, 27, 91-105. doi:10.1016/j.molcel.2007.06.017Grossman, M. I., Brazier, M. A. B., & Lechago, J. (Eds.). (1981).Cellular basis of chemical messengers in the digestive system(Vol. 23). Waltham, MA: Academic Press.Hall, G. B. C., Szechtman, H., & Nahmias, C. (2003). Enhancedsalience and emotion recognition in autism: A PET study.American Journal of Psychiatry, 160, 1439-1441. Retrievedfrom, J., Cleveland, S., Torres, A., Phillips, J., Cohen, B.,Torigoe, T., & . . . Risch, N. (2011). Genetic heritability andshared environmental factors among twin pairs with autism.Archives of General Psychiatry, 68, 1095-1102. doi:10.1001/archgenpsychiatry.2011.76Hao, J., Rapp, P. R., Leffler, A. E., Leffler, S. R., Janssen, W. G.,Lou, W., & . . . Morrison, J. H. (2006). Estrogen alters spinenumber and morphology in prefrontal cortex of aged femalerhesus monkeys. Journal of Neuroscience, 26, 2571-2578.doi:10.1523/JNEUROSCI.3440-05.2006Harlow, H. (1974). Induction and alleviation of depressive states inmonkeys. In N. F. White (Ed.), Ethology and psychiatry (pp.197-204). Toronto, Ontario, Canada: University of TorontoPress.Harlow, H., & Harlow, M. K. (1965). Effects of various mother-infant relationships on rhesus monkey behaviors. In B. M. Foss(Ed.), Determinants of infant behavior (Vol. 4, pp. 15-36).London, England: Methuen.Harvey, P. H., & Krebs, J. R. (1990). Comparing brains. Science,249, 140-146. doi:10.1126/science.2196673Hashimoto, M. O., Hossain, S., Shimada, T., Sugioka, K., Yamasaki,H., Fujii, Y., & . . . Shido, O. (2002). Docosahexaenoic acidprovides protection from impairment of learning ability inAlzheimer’s disease model rats. Journal of Neurochemistry,81, 1084-1091. doi:10.1046/j.1471-4159.2002.00905.xHashimoto, M. O., Tanabe, Y., Fujii, Y., Kikuta, T., Shibata, H., &Shido, O. (2005). Chronic administration of docosahexaenoicacid ameliorates the impairment of spatial cognition learningability in amyloid ß–infused rats. Journal of Nutrition, 135,549-555. Retrieved from, S., & Rowe, C. (2007). A critique of comparative studiesof brain size. Proceedings of the Royal Society of London,BiologicalSciences,274,453-464.doi:10.1098/rspb.2006.3748Helgen, K. M. (2011). The mammalian family tree. Science, 334,458-459. doi:10.1126/science.1214544Herculano-Houzel, S. (2009). The human brain in numbers:A linearly scaled-up primate brain. Frontiers in HumanNeuroscience, 3, 1-11. doi:10.3389/neuro.09.031.2009Herculano-Houzel, S. (2011). Scaling of brain metabolism witha fixed energy budget per neuron: Implications for neuro-nal activity, plasticity and evolution. PLoS ONE, 6, 1-9.doi:10.1371/journal.pone.0017514Herculano-Houzel, S., & Kaas, J. H. (2011). Gorilla and orang-utan brains conform to the primate cellular scaling rules:Implications for human evolution. Brain, Behavior andEvolution, 77, 33-44. doi:10.1159/000322729Hook, M. A., Lambeth, S. P., Perlman, J. E., Stavisky, R.,Bloomsmith, M. A., & Schapiro, S. J. (2002). Inter-groupvariation in abnormal behavior in chimpanzees (Pan trog-lodytes) and rhesus macaques (Macaca mulatta). AppliedAnimal Behaviour Science, 76, 165-176. doi:10.1016/S0168-1591(02)00005-9Horrocks, L. A., & Farooqui, A. A. (2004). Docosahexanoic acid inthe diet: Its importance in maintenance and restoration of neuralmembrane function. Prostaglandins, Leukotrienes & EssentialFatty Acids, 70, 361-372. doi:10.1016/j.plefa.2003.12.011Horrocks, L. A., & Yeo, Y. K. (1999). Health benefits of docosa-hexaenoic acid (DHA). Pharmacological Research, 40, 211-225. doi:10.1006/phrs.1999.0495Hu, V. W. (2013a). The expanding genomic landscape of autism:Discovering the “forest” beyond the “trees.” Future Neurology,8, 29-42. doi:10.2217/fnl.12.83Hu, V. W. (2013b). From genes to environment: Using integra-tive genomics to build a “systems-level” understanding ofautism spectrum disorders. Child Development, 84, 89-103.doi:10.1111/j.1467-8624.2012.01759.xIkemoto, A., Kobayashi, T., Watanabe, S., & Okuyama, H. (1997).Membrane fatty acid modifications of PC12 cells by arachi-donate or docosahexaenoate affect neurite outgrowth by notnorepinephrine release. Neurochemical Research, 22, 671-678.doi:10.1023/A:1027393724676Itokazu, N., Ikegaya, Y., Nishikawa, M., & Matsuki, N. (2000).Bidirectional actions of docosahexaenoic acid on hippocam-pal neurotransmissions in vivo. Brain Research, 862, 211-216.doi:10.1016/S0006-8993(00)02129-6James, S. J. (2008). Oxidative stress and the metabolic pathologyof autism. In A. W. Zimmerman (Ed.), Autism: Current theo-ries and evidence (pp. 245-268). Totowa, NJ: Humana Press.doi:10.1007/978-1-60327-489-0_11Jerison, H. J. (1973). Evolution of the brain and intelligence. NewYork, NY: Academic Press.Joffe, T. H., & Dunbar, R. I. M. (1997). Visual and socio-cognitiveinformation processing in primate evolution. Proceedings ofthe Royal Society of London, Biological Sciences, 264, 1303-1307. doi:10.1098/rspb.1997.0180Johnson, M. B., Imamura, Y. K., Mason, C. E., Krsnik, Z., Coppola,G., Bogdanović, B., & . . . Šestan, N. (2009). Functionaland evolutionary insights into human brain developmentthrough global transcriptome analysis. Neuron, 62, 494-509.doi:10.1016/j.neuron.2009.03.027Jolly, A. (1966). Lemur social behavior and primate intelligence.Science, 153, 501-506. doi:10.1126/science.153.3735.501Jurado, M. B., & Rosselli, M. (2007). The elusive nature ofexecutive functions: A review of our current understanding.Neuropsychology Review, 17, 213-233. doi:10.1007/s11065-007-9040-zKalcher-Sommersguter, E., Preuschoft, S., Crailsheim, K., & Franz,C. (2011). Social competence of adult chimpanzees (Pan trog-lodytes) with severe deprivation history: I. An individualapproach. Developmental psychology, 47, 77-90. doi:10.1037/a0020783Kan, I., Melamed, E., Offen, D., & Green, P. (2007).Docosahexaenoic acid and arachidonic acid are fundamen-tal supplements for the induction of neuronal differentiation.Journal of Lipid Research, 48, 513-517. doi:10.1194/jlr.C600022-JLR200Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet,C. W., Haussler, D., & Kent, W. J. (2003). The UCSC Tableby guest on May 12, 2013sgo.sagepub.comDownloaded from
  17. 17. 16 SAGE OpenBrowser data retrieval tool. Nucleic Acids Research, 32(Suppl.1), D493-D496. doi:10.1093/nar/gkh103Kawakita, E., Hashimoto, M., & Shido, O. (2006). Docosahexaenoicacid promotes neurogenesis in vitro and in vivo. Neuroscience,139, 991-997. doi:10.1016/j.neuroscience.2006.01.021Keller, F., Panteri, R., & Biamonte, F. (2010). Interaction betweengenetic vulnerability and neurosteriods in Purkinje cells as apossible neurological mechanism in autism spectrum disor-ders. In A. W. Zimmerman (Ed.), Autism: Current theories andevidence (pp. 209-231). Totowa, NJ: Humana Press.Kempes, M. M., Gulickx, M. M. C., van Daalen, H. J. C., Louwerse,A. L., & Sterck, E. H. M. (2008). Social competence is reducedin socially deprived rhesus monkeys (Macaca mulatta). Journalof Comparative Psychology, 122, 62-67. doi:10.1037/0735-7036.122.1.62Kent, W. J. (2002). BLAT—The BLAST-like alignment tool.Genome Research, 12, 656-664. doi:10.1101/gr.229202Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle,T. H., Zahler, A. M., & Haussler, D. (2002). The humangenome browser at UCSC. Genome Research, 12, 996-1006.doi:10.1101/gr.229102Kim, H. Y., Akbar, M., & Kim, K. (2001). Inhibition of neuronalapoptosis by polyunsaturated fatty acids. Journal of MolecularNeuroscience, 16, 223-227. doi:10.1385/JMN:16:2-3:223Kim, H. Y., Akbar, M., Lau, A., & Edsall, L. (2000). Inhibitionof neuronal apoptosis by docosahexaenoic acid (22:6n-3).Role of phosphatidylserine in antiapoptotic effect. Journalof Biological Chemistry, 275, 35215-35223. doi:10.1074/jbc.M00444Kritzer, M. F. (2006). Regional, laminar and cellular distribution ofimmunoreactivity for ΕΡβ in the cerebral cortex of hormonallyintact, postnatally developing male and female rats. CerebralCortex, 16, 1181-1192. doi:10.1093/cercor/bhj059Krueger, F., Parasuraman, R., Iyengar, V., Thornburg, M., Weel, J.,Lin, M., . . . Lipsky, R. H. (2012). Oxytocin receptor geneticvariation promotes human trust behavior. Frontiers in HumanNeuroscience, 6, 1-9. doi:10.3389/fnhum.2012.00004Kudo, H., & Dunbar, R. I. M. (2001). Neocortex size and socialnetwork size in primates. Animal Behavior, 62, 711-722.doi:10.1006/anbe.2001.1808Lammi-Keefe, C. J., Rozowski, J., Parodi, C. G., Sobrevia, L., &Foncea, R. (2008). Docosahexaenoic acid (DHA) supplemen-tation benefits pregnancy complicated with gestational diabe-tes mellitus (GDM). FASEB Journal, 22, 702-731.Lenroot, R. K., & Giedd, J. N. (2006). Brain development in chil-dren and adolescents: Insights from anatomical magnetic reso-nance imaging. Neuroscience & Biobehavioral Reviews, 30,718-729. doi:10.1016/j.neubiorev.2006.06.001Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seedpairing, often flanked by adenosines, indicates that thousandsof human genes are microRNA targets. Cell, 120, 15-20.doi:10.1016/j.cell.2004.12.035Lindenfors, P. (2005). Neocortex evolution in primates: The “socialbrain” is for females. Biology Letters, 1, 407-410. doi:10.1098/rsbl.2005.0362Love, T. M., Enoch, M.-A., Hodgkinson, C. A., Pecina, M., Mickey,B., Koeppe, R. A., . . . Zubieta, J.-K. (2012). Oxytocin genepolymorphisms influence human dopaminergic function in asex-dependent manner. Biological Psychiatry, 72, 198-206.doi:10.1016/j.biopsych.2012.01.033Luine, V. N., Jacome, L. F., Maclusky, N. J. (2003). Rapidenhancement of visual and place memory by estrogens in rats.Endocrinology, 144, 2836-2844. doi:10.1210/en.2003-0004Lukiw, W. J., Cui, J.-G., Marcheselli, V. L., Bodker, M., Botkjaer,A., Gotlinger, K., & . . . Bazan, N. G. (2005). A role fordocosahexaenoic acid-derived neuroprotectin D1 in neuralcell survival and Alzheimer’s disease. Journal of ClinicalInvestigation, 115, 2774-2783. doi:10.1172/JCI25420Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009).Effects of stress throughout the lifespan on the brain, behaviourand cognition. Nature Reviews Neuroscience, 10, 434-445.Ma, Z. Q., Spreafico, E., Polio, G., Santagati, S., Conti, E., Cattaneo,E., & Maggi, A. (1993). Activated estrogen receptor mediatesgrowth arrest and differentiation of a neuroblastoma cell line.Proceedings of the National Academy of Sciences of the UnitedStates of America, 90, 3740-3744. doi:10.1073/pnas.90.8.3740Maenner, M. J., Arneson, C. L., Levy, S. E., Kirby, R. S., Nicholas,J. S., & Durkin, M. S. (2012). Brief report: Association betweenbehavioral features and gastrointestinal problems amongchildren with autism spectrum disorder. Journal of Autismand Developmental Disorders, 42, 1520-1525. doi:10.1007/s10803-011-1379-6Maestripieri, D. (2003). Attachment. In D. Maestripieri (Ed.),Primate psychology (pp. 108-143). Cambridge, MA: HarvardUniversity Press.Main, K. M., Schmidt, I. M., & Skakkebæk, N. E. (2000). A Possiblerole for reproductive hormones in newborn boys: Progressivehypogonadism without the postnatal testosterone peak. Journalof Endocrinology & Metabolism, 85, 4905-4907. doi:10.1210/jc.85.12.4905Makrides, M., Gibson, R. A., McPhee, A. J., Collins, C. T., Davis, P.G., Doyle, L. W., & . . . Ryan, P. (2009). Neurodevelopmentaloutcomes of preterm infants fed high-dose docosahexaenoicacid. Journal of the American Medical Association, 301, 175-182. doi:10.1001/jama.2008.945Malone, J. P. (2011a, August). Autistogenesis: A systems theorywith evolutionary perspective. Poster presented at the AmericanPsychological Association 119th Annual Convention,Washington, DC.Malone, J. P. (2011b, July). Autistogenesis: A systems theory withevolutionary perspective. Poster presented at the Autism Society,41st National Conference, Orlando, FL. Retrieved from, J. P. (2011c, April). The systems theory of autistogene-sis and its evolutionary implications. Poster presented at theWestern Psychological Association 91st Annual Convention,Los Angeles, CA. Retrieved from, J. P. (2011d, July). Video documentation of an autisticchimpanzee and her neurobiologically developmentally appro-priate treatment. Poster presented at the Autism Society, 41stNational Conference, Orlando, FL. Retrieved from [videoavailable at]Malone, J. P. (2012). The systems theory of autistogen-esis: Putting the pieces together. SAGE Open, 2, 1-8.doi:10.1177/2158244012444281Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T.J., D’Souza, C., Fouse, S. D., . . . Costello, J. F. (2010).Conserved role of intragenic DNA methylation in regulatingby guest on May 12, 2013sgo.sagepub.comDownloaded from
  18. 18. Malone 17alternative promoters. Nature, 466, 253-257. doi:10.1038/nature09165McCarthy, M. M. (2008). Estradiol and the developing brain.Physiological Reviews, 88, 91-124. doi:10.1152/phys-rev.00010.2007McGrew, W. C. (1992). Chimpanzee material culture: Implicationsfor human evolution. Cambridge, UK: Cambridge UniversityPress.McNamara, R. K. (2010). DHA deficiency and prefrontal cortexneuropathology in recurrent affective disorders. Journal ofNutrition, 140, 864-868. doi:10.3945/jn.109.113233Mertler, C. A., & Vannatta, R. A. (2010). Advanced and multi-variate statistical methods (4th ed.). Glendale, CA: PyrczakPublishing.Miller, E. K. (2000). The prefrontal cortex and cognitive control.Nature Reviews Neuroscience, 1, 59-66. doi:10.1038/35036228Miller, E. K., & Cohen, J. D. (2001). An integrative theory of pre-frontal cortex function. Annual Review of Neuroscience, 24,167-202. doi:10.1146/annurev.neuro.24.1.167Morin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M.,Pugh, T. J., & . . . Marra, M. A. (2008). Profiling the HeLaS3 transcriptome using randomly primed cDNA and massivelyparallel short-read sequencing. Biotechniques, 45, 81-94.doi:10.2144/000112900Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett,D. A., Wilson, R. S., & . . . Schneider, J. (2003). Consumptionof fish and n-3 fatty acids and risk of incident Alzheimer dis-ease. Archives of Neurology, 60, 940-946. doi:10.1001/arch-neur.60.7.940Mukai, H., Tsurugizawa, T., Murakami, G., Kominami, S., Ishii,H., Ogiue-Ikeda, M., & . . . Kawato, S. (2007). Rapid mod-ulation of long-term depression and spinogenesis via syn-aptic estrogen receptors in hippocampal principal neurons.Journal of Neurochemistry, 100, 950-967. doi:10.1111/j.1471-4159.2006.04264.xMüller, R. H., Radtke, M., & Wissing, S. A. (2002). Nanostructuredlipid matrices for improved microencapsulation of drugs.International Journal of Pharmaceutics, 242, 121-128.doi:10.1016/S0378-5173(02)00180-1Mustard, J. F., & McCain, M. N. (2000). Early years study finalreport: Reversing the real brain drain. Toronto, Canada:Ontario Children’s Secretariat.Nanick, E. F. G., Lucassen, P. J., & Bakker, J. (2011). Sex differ-ences in adolescent depression: Do sex hormones determinevulnerability? Journal of Neurobiology, 23(55), 1-10.Nash, L. T., Fritz, J., Alford, P. A., & Brent, L. (1999). Variablesinfluencing the origins of diverse abnormal behaviors in a largesample of captive chimpanzees (Pan troglodytes). Americanjournal of Primatology, 48, 15-29. doi:10.1002/(SICI)1098-2345(1999)48:1<15::AID-AJP2>3.3.CO;2-INissenson, R., Flouret, G., & Hechter, O. (1978). Opposing effectsof Estradiol and progesterone on oxytocin receptors in rabbituterus. Proceedings of the National Academy of Sciences ofthe United States of America, 75, 2044-2048. doi:10.1073/pnas.75.4.2044O’Brien, R. M. (2007). A caution regarding rules of thumb forvariance inflation factors. Quality & Quantity, 41, 673-690.doi:10.1007/s11135-006-9018-6Okada, M., Amamoto, T., Tomonaga, M., Kawachi, A., Yazawa, K.,Mine, K., & Fujiwara, M. (1996). The chronic administrationof Docosahexaenoic acid reduces the spatial cognitive deficitfollowing transient forebrain ischemia in rats. Neuroscience,71, 17-25. doi:10.1016/0306-4522(95)00427-0Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M.,Panzanelli, R., & . . . Gross, C. T. (2011). Synaptic pruning bymicroglia is necessary for normal brain development. Science,333, 1456-1458. doi:10.1126/science.1202529Pawlowski, B., Lowen, C. B., & Dunbar, R. I. M. (1998).Neocortex size, social skills and mating success in primates.Behaviour, 135, 357-368. Retrieved from, J. S., Vicini, S., Rogawski, M. A., & Salem, N., Jr. (1996).Docosahexanoic acid block of neuronal voltage-gated K+ chan-nels:Subunitselectiveantagonismbyzinc.Neuropharmacology,35, 969-982. doi:10.1016/0028-3908(96)00127-xPrange-Kiel, J., & Rune, G. M. (2006). Direct and indirect effectsof estrogen on rat hippocampus. Neuroscience, 138, 765-772.doi:10.1016/j.neuroscience.2005.05.061Quesada, A., Lee, B. Y., & Micevych, P. E. (2009). PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DAneuronal neuroprotection against a unilateral rat model ofParkinson’s disease. Developmental Neurobiology, 65, 632-644. doi:10.1002/dneu.20609Raimundo, N., Song, L., Shutt, T. E., McKay, S. E., Cotney, J.,Guan, M. X., & . . . Shadel, G. S. (2012). Mitochondrial stressengages E2F1 apoptotic signaling to cause deafness. Cell, 148,716-726. doi:10.1016/j.cell.2011.12.027Rao, J. S., Kim, H.-W., Kellom, M., Greenstein, D., Chen, M.,Kraft, A. D., . . . Basselin, M. (2011). Increased neuroinflam-matory and arachidonic acid cascade markers, and reducedsynaptic proteins, in brain of HIV-1 transgenic rats. Journalof Neuroinflammation, 8, 1-13. doi:10.1186/1742-2094-8-101Rao, J. S., Rapoport, S. I., & Kim, H.-W. (2011). Altered neuroin-flammatory, arachidonic acid cascade and synaptic biomark-ers in post-mortem Alzheimer’s disease brain. TranslationalPsychiatry, 1, 1-9. doi:10.1038/tp.2011.27Rapoport, S. I., Ramadan, E., & Basselin, M. (2011). Docosahexae-noic acid (DHA) incorporation into the brain from plasma, asan in vivo biomarker of brain DHA metabolism and neuro-transmission. Prostaglandins Other Lipid Mediators, 96, 109-113. doi:10.1016/j.prostaglandins.2011.06.003Rapoport, S. I., Rao, J. S., & Igarashi, M. (2007). Brain metabolism ofnutritionallyessentialpolyunsaturatedfattyacidsdependsonboththe diet and the liver. Prostaglandins, Leukotriens & EssentialFatty Acids, 77, 251-261. doi:10.1016/j.plefa.2007.10.023Rasmussen, J. E., Torres-Aleman, I., MacLusky, N. J., Naftolin, F.,& Robbins, R. J. (1990). The effects of estradiol on the growthpatterns of estrogen receptor-positive hypothalamic cell lines.Endocrinology, 126, 235-240. doi:10.1210/endo-126-1-235Reader, S. M., & Laland, K. N. (2002). Social intelligence, innova-tion and enhanced brain size in primates. Proceedings of theNational Academy of Sciences of the United States of America,99, 4436-4441. doi:10.1073/pnas.062041299Real, S., Meo-Evoli, N., Espada, L., & Tauler, A. (2011). E2F1regulates cellular growth by mTORC1 signaling. PloS One, 6,1-12. doi:10.1371/journal.pone.0016163by guest on May 12, 2013sgo.sagepub.comDownloaded from
  19. 19. 18 SAGE OpenRidley, R. M., & Baker, H. F. (1982). Stereotypy in monkeys andhumans. Psychological Medicine, 12, 61-72. doi:10.1017/S0033291700043294Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y.,Zeng, T., & . . . Jones, S. (2007). Genome-wide profiles ofSTAT1 DNA association using chromatin immunoprecipita-tion and massively parallel sequencing. Nature Methods, 4,651-657. doi:10.1038/nmeth1068Rodman, P. S. (1993). Diversity and consistency in ecology andbehavior. In R. Tilson, K. Traylor-Holzer, & U. Seal (Eds.),Orangutan population and habitat viability analysis workshop:Briefing book (pp. 31-51). Oxford, UK: Oxford UniversityPress.Rodseth, L., Wrangham, R., W., Harrigan, A. M., & Smuts,B. B. (1991). The human community as a primate soci-ety [and comments]. Current Anthropology, 32, 221-254.doi:10.1086/203952Rose, S., Melnyk, S., Pavliv, O., Bai, S., Nick, T. G., Frye, R.E., & James, S. J. (2012). Evidence of oxidative damage andinflammation associated with low glutathione redox status inthe autism brain. Translational Psychiatry, 2, 1-8. doi:10.1038/tp.2012.61Rossignol, D. A., & Frye, R. E. (2011). A review of research trendsin physiological abnormalities in autism spectrum disorders:Immune dysregulation, inflammation, oxidative stress, mito-chondrial dysfunction and environmental toxicant exposures.Molecular Psychiatry, 17, 389-401. doi:10.1038/mp.2011.165Russell, T., & Ainsworth, M. D. S. (1981). Maternal affection-ate behavior and infant-mother attachment patterns. ChildDevelopment, 52, 1341-1343.Schillaci, M. (2008). Primate mating systems and the evolu-tion of neocortex size. Journal of Mammalogy, 89, 58-63.doi:10.1644/06-MAMM-A-417.1Scoville, A., & Pfrender, M. (2010). Phenotypic plasticity facilitatesrecurrent rapid adaptation to introduced predators. Proceedingsof the National Academy of Sciences of the United States ofAmerica, 107, 4260-4263. doi:10.1073/pnas.0912748107Sebastian, S., & Bulun, S. E. (2001). A highly complex organiza-tion of the regulatory region of the human CYP19 (Aromatase)gene revealed by the human genome project. Journal of ClinicalEndocrinology & Metabolism, 86, 4600-4602. doi:10.1210/jc.86.10.4600Sen, C. K., Khanna, S., & Roy, S. (2006). Tocotrienols: Vitamin Ebeyondtocopherols.LifeScience,78,2088-2098.doi:10.1016/j.lfs.2005.12.001Severance, E. G., Alaedini, A., Yang, S., Halling, M., Gressitt, K.L., Stallings, C. R., & . . . Yolken, R. H. (2012). Gastrointestinalinflammation and associated immune activation in schizo-phrenia. Schizophrenia Research, 138, 48-53. doi:10.1016/j.schres.2012.02.025Sharawy, N., Hassan, M., Rashed, L., Shawky, W., & Rateb, M.(2012). Evaluation of the effects of estradiol on the hypothal-amo-pitutary adrenal axis response during systemic and localinflammation. Modern Research in Inflammation, 1, 1-10.doi:10.4236/mri.2012.11001Sharma, A., Nash, A. A., & Dorman, M. (2009). Cortical develop-ment, plasticity and reorganization in children with cochlearimplants. Journal of Communication Disorders, 42, 272-279.Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L.,Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBIdatabase of genetic variation. Nucleic Acids Research, 29, 308-311. doi:10.1093/nar/29.1.308Shonkoff, J. P.(2011). Protecting brains, not simply stimulatingminds. Science, 333, 982-983.Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W.,Hinshelwood, M. M., Graham-Lorence, S., & . . . Bulun, S. E.(1994). Aromatase cytochrome P450, the enzyme responsiblefor estrogen biosynthesis. Endocrine Reviews, 15, 342-355.doi:10.1210/erdv-15-3-342Singleton, I., & van Schaik, C. P. (2002). The social organisationof a population of Sumatran orang-utans. Folia Primatologica,73, 1-20. doi:10.1159/000060415Sinopoli, K. J., Floresco, S. B., & Galea, L. A. (2006). Systemicand local administration of estradiol into the prefrontalcortex or hippocampus differentially alters working mem-ory. Neurobiology Learning and Memory, 86, 293-304.doi:10.1016/j.nlm.2006.04.003Slavich, G. M., Way, B. M., Eisenberger, N. I., & Taylor, S. E.(2011, April-May). Neural sensitivity to social rejection isassociated with inflammatory responses to social stress. Postersession presented at the Western Psychological Association,91st annual convention, Los Angeles, CA.Smaers, J. B., Schleicher, A., Zilles, K., & Vinicius, L. (2010).Frontal white matter volume is associated with brain enlarge-ment and higher structural connectivity in anthropoid primates.PloS One, 5, e9123.Smith, L. E., Greenberg, J. S., Seltzer, M. M., & Hong, J. (2008).Symptoms and behavior problems of adolescents and adultswith autism: Effects of mother-child relationship quality,warmth, and praise. American Journal of Mental Retardation,113, 387-402. doi:10.1352/2008.113:387-402Snodgrass, J. J., Leonard, W. R., & Robertson, M. L. (2009). Theenergetics of encephalization in early hominids. In J. J. Hublin& M. P. Richards (Eds.), The evolution of hominin diets:Integrating approaches to the study of palaeolithic subsistence(pp. 15-29). New York, NY: Springer.Sophonsritsuk, A., Appt, S. E., Clarkson, T. B., Shively, C. A.,Espeland, M. A., & Register, T. C. (2013). Differential effectsof estradiol on carotid artery inflammation when administeredearly versus late after surgical menopause. Menopause, 20(5),1. doi:10.1097/gme.0b013e31827461e0Spampinato, S. F., Merlo, S., Nicoletti, F., & Sortino, M. A. (2012).A main role for metabotropic glutamate receptor 1 in theneuroprotective effect of estrogen. Molecular and CellularPharmacology, 4, 61-67.Spritzer, M. D., Daviau, E. D., Coneeny, M. K., Engleman, S. M.,Prince, W. T., & Rodriguez-Wisdom, K. N. (2011). Effectsof testosterone on spatial learning and memory in adult malerats. Hormones and Behavior, 59, 484-496. doi:10.1016/j.yhbeh.2011.01.009Stenzel, U. (2009). Rapid and accurate semi-global alignment ofdiverged sequencing reads. Poster presented at the GermanConference on Bioinformatics 2009. Retrieved from [ANFO software usedfor Neanderthal alignment is available for download]by guest on May 12, 2013sgo.sagepub.comDownloaded from
  20. 20. Malone 19Strober, W., & Fuss, I. J. (2011). Proinflammatory cytokines in thepathogenesisofinflammatoryboweldiseases.Gastroenterology,140, 1756-1767. doi:10.1053/j.gastro.2011.02.016Suddendorf, T., & Whiten, A. (2001). Mental evolution and devel-opment: Evidence for secondary representation in children,great apes, and other animals. Psychological Bulletin, 127,629-650. doi:10.1037/0033-2909.127.5.629Sutcliffe, A., Dunbar, R., Binder, J., & Arrow, H. (2012).Relationships and the social brain: Integrating psychologicaland evolutionary perspectives. British Journal of Psychology,103, 149-168. doi:10.1111/j.2044-8295.2011.02061.xte Boekhorst, I. J. A., Schürmann, C. L., & Sugardjito, J. (1990).Residential status and seasonal movements of wild orang-utansin the Gunung Leuser Reserve (Sumatera, Indonesia). AnimalBehaviour, 39, 1098-1109. doi:10.1016/S0003-3472(05)80782-1Trainor, B. C., Lin, S., Finy, M. S., Rowland, M. R., & Nelson,R. J. (2007). Photoperiod reverses the effects of estrogenson male aggression via genomic and nongenomic pathways.Proceedings of the National Academy of Sciences of the UnitedStates of America, 104, 9840-9845. 10.1073/pnas.0701819104Utami, S. S., Goossens, B., Bruford, M. W., de Ruiter, J. R., & vanHooff, J. A. R.A. M. (2002). Male bimaturism and reproduc-tive success in Sumatran orang-utans. Behavioral Ecolology,13, 643-652. doi:10.1093/beheco/13.5.643van Ijzendoorn, M. H., Bard, K. A., Bakermans-Kranenburg, M. J.,& Ivan, K. (2008). Enhancement of attachment and cognitivedevelopment of young nursery-reared chimpanzees in respon-sive versus standard care. Developmental Psychobiology, 51,173-185. doi:10.1002/dev.20356van Kooten, I. A. J., Palmen, S. J. M. C., von Cappeln, P.,Steinbusch, H. W. M., Korr, H., Heinsen, H., . . . Schmitz, C.(2008). Neurons in the fusiform gyrus are fewer and smaller inautism. Brain, 131, 987-999. doi:10.1093/brain/awn033Voytek, B., & Knight, R. T. (2010). Prefrontal cortex and basalganglia contributions to visual working memory. Proceedingsof the National Academy of Sciences of the United States ofAmerica, 107, 18167-18172. doi:10.1073/pnas.1007277107Vreugdenhil, M., Bruehl, C., Voskuyl, R. A., Kang, J. X., Leaf, A.,& Wadman, W. J. (1996). Polyunsaturated fatty acids modu-late sodium and calcium currents in CA1 neurons. Proceedingsof the National Academy of Sciences of the United States ofAmerica, 93, 12559-12563. doi:10.1073/pnas.93.22.12559Walker, R., Burger, O., Wagner, J., & Von Rueden, C. R. (2006).Evolution of brain size and juvenile periods in humans.Journal of Human Evolution, 51, 480-489. doi:10.1016/j.jhevol.2006.06.002Whittle, J. (1981). Arachidonic acid metabolites and the gastro-intestinal toxicity of anti-inflammatory agents. Prostaglandins,21(Suppl. 1), 113-118. doi:10.1016/0090-6980(81)90126-XWilson, M. L., Kahlenberg, S. M., Wells, M., & Wrangham, R. W.(2011). Ecological and social factors affect the occurrence andoutcomes of intergroups encounters in chimpanzees. AnimalBehaviour, 83, 277-291. doi:10.1016/j.anbehav.2011.11.004Woolley, C. S. (2007). Acute effects of estrogen on neuronal physi-ology. Annual Review of Pharmacology and Toxicology, 47,657-680. doi:10.1146/annurev.pharmtox.47.120505.105219Wrangham, R. W. (1993). Demonic males: Apes and the origins ofhuman violence. New York, NY: Mariner Books.Wu, J., Zeng, Y., Huang, J., How, W., Zhu, J., & Wu, R. (2007).Functional mapping for reaction norms to multiple environ-mental signals. Genetical Research, 89, 27-38. doi:10.1017/S0016672307008622Xi, D., Li, Y. C., Snyder, M. A., Gao, R. Y., Adelman, A. E.,Zhang, W., & Gao, W. J. (2011). Group II metabotropic gluta-mate receptor agonist ameliorates MK801-induced dysfunctionof NMDA receptors via the Akt/GSK-3β pathway in adult ratprefrontal cortex. Neuropsychopharmacology, 36, 1260-1274.doi:10.1038/npp.2011.12Yamagiwa, J., Kahekwa, J., & Basabose, A. K. (2003). Intra-specificvariation in social organization of gorillas: Implications fortheir social evolution. Primates, 44, 359-369. doi:10.1007/s10329-003-0049-5Yap, J. S., Yao, L., Das, K., Li, J., & Wu, R. (2011). Functionalmapping of reaction norms to multiple environmental signalsthrough nonparametric covariance estimation. BMC PlantBiology, 11, 1-13. doi:10.1186/1471-2229-11-23Young, C., Gean, P.-W., Chiou, L.-C., & Shen, Y.-Z. (2000).Docosahexanoic acid inhibits synaptic transmission and epi-leptiform activity in the rat hippocampus. Synapse, 37, 90-94.doi:10.1002/1098-2396(200008)37::2<90:AID-SYN2>3.0.CO;2-ZYoung, C., Gean, P.-W., Wu, S.-P., Lin, C.-H., & Shen, Y.-Z.(1998). Cancellation of low frequency stimulation-inducedlong-term depression by docosahexaenoic acid in the rat hip-pocampus. Neuroscience Letters, 247, 198-200. doi:10.1016/S0304-3940(98)00272-9Zhang, L., Nair, A., Krady, K., Corpe, C., Bonnear, R. H., Simpson,I., & Vannucci, S. J. (2004). Estrogen stimulates microglia andbrain recovery from hypoxia-ischemia in normoglycemic butnot diabetic female mice. Journal of Clinical Investigations,113, 85-95. doi:10.1172/JCI18336Zierau, O., Zenclussen, A. C., & Jensen, F. (2012). Role offemale sex hormones, estradiol and progesterone, in mastcell behavior. Frontiers in Immunology, 3, 1-4. doi:10.3389/fimmu.2012.00169Author BiographyJ. Patrick Malone explores the rise of developmental disorderfrom an evolutionary perspective. Through neurogenetics, neuro-physiology, and comparative developmental psychopathology, heseeks to answer whether human brain evolution required selectionfor predisposition to guest on May 12, 2013sgo.sagepub.comDownloaded from