SlideShare a Scribd company logo
Submit Search
Upload
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017 / English Ver.)
Report
Share
Yahoo!デベロッパーネットワーク
Public Relations
Follow
•
5 likes
•
21,685 views
1
of
55
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017 / English Ver.)
•
5 likes
•
21,685 views
Report
Share
Download Now
Download to read offline
Technology
Presentation slides about the architecture of “Dragon” A distributed object storage at Yahoo! JAPAN.
Read more
Yahoo!デベロッパーネットワーク
Public Relations
Follow
Recommended
Cassandra: Now and the Future @ Yahoo! JAPAN by
Cassandra: Now and the Future @ Yahoo! JAPAN
Yahoo!デベロッパーネットワーク
1.1K views
•
25 slides
Apache: Big Data North America 2017 参加報告 #streamctjp by
Apache: Big Data North America 2017 参加報告 #streamctjp
Yahoo!デベロッパーネットワーク
438 views
•
36 slides
Cloud Foundry Summit 2017 by
Cloud Foundry Summit 2017
Yahoo!デベロッパーネットワーク
2.7K views
•
56 slides
Maintainable cloud architecture_of_hadoop by
Maintainable cloud architecture_of_hadoop
Kai Sasaki
4.3K views
•
60 slides
Vespa - Tokyo Meetup #yjmu by
Vespa - Tokyo Meetup #yjmu
Yahoo!デベロッパーネットワーク
746 views
•
23 slides
Ventajas de IPv6 by
Ventajas de IPv6
Eduardo Castro
735 views
•
32 slides
More Related Content
What's hot
Online Upgrade Using Logical Replication by
Online Upgrade Using Logical Replication
EDB
66 views
•
33 slides
A Peek in the Elephant's Trunk by
A Peek in the Elephant's Trunk
EDB
3K views
•
54 slides
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート... by
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...
Hadoop / Spark Conference Japan
1.7K views
•
22 slides
Hedis - GET HBase via Redis by
Hedis - GET HBase via Redis
Mu Chun Wang
4.3K views
•
83 slides
Big Data Tools : PAST, NOW and FUTURE by
Big Data Tools : PAST, NOW and FUTURE
Jazz Yao-Tsung Wang
1.7K views
•
34 slides
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics by
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
DataWorks Summit
4.9K views
•
20 slides
What's hot
(20)
Online Upgrade Using Logical Replication by EDB
Online Upgrade Using Logical Replication
EDB
•
66 views
A Peek in the Elephant's Trunk by EDB
A Peek in the Elephant's Trunk
EDB
•
3K views
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート... by Hadoop / Spark Conference Japan
The Evolution and Future of Hadoop Storage (Hadoop Conference Japan 2016キーノート...
Hadoop / Spark Conference Japan
•
1.7K views
Hedis - GET HBase via Redis by Mu Chun Wang
Hedis - GET HBase via Redis
Mu Chun Wang
•
4.3K views
Big Data Tools : PAST, NOW and FUTURE by Jazz Yao-Tsung Wang
Big Data Tools : PAST, NOW and FUTURE
Jazz Yao-Tsung Wang
•
1.7K views
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics by DataWorks Summit
A Non-Standard use Case of Hadoop: High Scale Image Processing and Analytics
DataWorks Summit
•
4.9K views
Managing PostgreSQL with Ansible by EDB
Managing PostgreSQL with Ansible
EDB
•
223 views
Managing 50K+ Redis Databases Over 4 Public Clouds ... with a Tiny Devops Team by Redis Labs
Managing 50K+ Redis Databases Over 4 Public Clouds ... with a Tiny Devops Team
Redis Labs
•
28K views
Does Anyone Really Need RAC? by EDB
Does Anyone Really Need RAC?
EDB
•
110 views
Hops - Distributed metadata for Hadoop by Jim Dowling
Hops - Distributed metadata for Hadoop
Jim Dowling
•
407 views
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016... by Hadoop / Spark Conference Japan
Apache Kudu Fast Analytics on Fast Data (Hadoop / Spark Conference Japan 2016...
Hadoop / Spark Conference Japan
•
2.5K views
Smau Milano 2016 - Fabio Alessandro Locati by Smau
Smau Milano 2016 - Fabio Alessandro Locati
Smau
•
198 views
Distributed Databases Deconstructed: CockroachDB, TiDB and YugaByte DB by YugabyteDB
Distributed Databases Deconstructed: CockroachDB, TiDB and YugaByte DB
YugabyteDB
•
2.6K views
MODIS Land and HDF-EOS by The HDF-EOS Tools and Information Center
MODIS Land and HDF-EOS
The HDF-EOS Tools and Information Center
•
955 views
Hopsfs 10x HDFS performance by Jim Dowling
Hopsfs 10x HDFS performance
Jim Dowling
•
681 views
DAT316_Report from the field on Aurora PostgreSQL Performance by Amazon Web Services
DAT316_Report from the field on Aurora PostgreSQL Performance
Amazon Web Services
•
2.3K views
PostgreSQL - масштабирование в моде, Valentine Gogichashvili (Zalando SE) by Ontico
PostgreSQL - масштабирование в моде, Valentine Gogichashvili (Zalando SE)
Ontico
•
2.6K views
ElastiCache & Redis by Amazon Web Services
ElastiCache & Redis
Amazon Web Services
•
1.1K views
MongoDB Capacity Planning by Norberto Leite
MongoDB Capacity Planning
Norberto Leite
•
2.1K views
Presto - Hadoop Conference Japan 2014 by Sadayuki Furuhashi
Presto - Hadoop Conference Japan 2014
Sadayuki Furuhashi
•
107.3K views
Viewers also liked
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017) by
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Yahoo!デベロッパーネットワーク
21.9K views
•
55 slides
広告における機械学習の適用例とシステムについて by
広告における機械学習の適用例とシステムについて
Yahoo!デベロッパーネットワーク
2.5K views
•
17 slides
Yahoo! JAPANのOSS Cassandra貢献の今までとこれから by
Yahoo! JAPANのOSS Cassandra貢献の今までとこれから
Yahoo!デベロッパーネットワーク
2K views
•
32 slides
Design pattern in presto source code by
Design pattern in presto source code
Yahoo!デベロッパーネットワーク
1.6K views
•
51 slides
深層学習と確率プログラミングを融合したEdwardについて by
深層学習と確率プログラミングを融合したEdwardについて
ryosuke-kojima
7.1K views
•
24 slides
ICML2017 参加報告会 山本康生 by
ICML2017 参加報告会 山本康生
Yahoo!デベロッパーネットワーク
1.4K views
•
50 slides
Viewers also liked
(8)
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017) by Yahoo!デベロッパーネットワーク
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017)
Yahoo!デベロッパーネットワーク
•
21.9K views
広告における機械学習の適用例とシステムについて by Yahoo!デベロッパーネットワーク
広告における機械学習の適用例とシステムについて
Yahoo!デベロッパーネットワーク
•
2.5K views
Yahoo! JAPANのOSS Cassandra貢献の今までとこれから by Yahoo!デベロッパーネットワーク
Yahoo! JAPANのOSS Cassandra貢献の今までとこれから
Yahoo!デベロッパーネットワーク
•
2K views
Design pattern in presto source code by Yahoo!デベロッパーネットワーク
Design pattern in presto source code
Yahoo!デベロッパーネットワーク
•
1.6K views
深層学習と確率プログラミングを融合したEdwardについて by ryosuke-kojima
深層学習と確率プログラミングを融合したEdwardについて
ryosuke-kojima
•
7.1K views
ICML2017 参加報告会 山本康生 by Yahoo!デベロッパーネットワーク
ICML2017 参加報告会 山本康生
Yahoo!デベロッパーネットワーク
•
1.4K views
協調フィルタリングを利用した推薦システム構築 by Masayuki Ota
協調フィルタリングを利用した推薦システム構築
Masayuki Ota
•
25.9K views
いまさら聞けない機械学習の評価指標 by 圭輔 大曽根
いまさら聞けない機械学習の評価指標
圭輔 大曽根
•
105.6K views
Similar to Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017 / English Ver.)
What's new in Hadoop Common and HDFS by
What's new in Hadoop Common and HDFS
DataWorks Summit/Hadoop Summit
2.9K views
•
28 slides
Trend Micro Big Data Platform and Apache Bigtop by
Trend Micro Big Data Platform and Apache Bigtop
Evans Ye
8.8K views
•
77 slides
HDF Cloud Services by
HDF Cloud Services
The HDF-EOS Tools and Information Center
3.5K views
•
31 slides
Scalable and High available Distributed File System Metadata Service Using gR... by
Scalable and High available Distributed File System Metadata Service Using gR...
Alluxio, Inc.
2.6K views
•
33 slides
Upgrading HDFS to 3.3.0 and deploying RBF in production #LINE_DM by
Upgrading HDFS to 3.3.0 and deploying RBF in production #LINE_DM
Yahoo!デベロッパーネットワーク
3.1K views
•
25 slides
Webinar - DreamObjects/Ceph Case Study by
Webinar - DreamObjects/Ceph Case Study
Ceph Community
1.7K views
•
28 slides
Similar to Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017 / English Ver.)
(20)
What's new in Hadoop Common and HDFS by DataWorks Summit/Hadoop Summit
What's new in Hadoop Common and HDFS
DataWorks Summit/Hadoop Summit
•
2.9K views
Trend Micro Big Data Platform and Apache Bigtop by Evans Ye
Trend Micro Big Data Platform and Apache Bigtop
Evans Ye
•
8.8K views
HDF Cloud Services by The HDF-EOS Tools and Information Center
HDF Cloud Services
The HDF-EOS Tools and Information Center
•
3.5K views
Scalable and High available Distributed File System Metadata Service Using gR... by Alluxio, Inc.
Scalable and High available Distributed File System Metadata Service Using gR...
Alluxio, Inc.
•
2.6K views
Upgrading HDFS to 3.3.0 and deploying RBF in production #LINE_DM by Yahoo!デベロッパーネットワーク
Upgrading HDFS to 3.3.0 and deploying RBF in production #LINE_DM
Yahoo!デベロッパーネットワーク
•
3.1K views
Webinar - DreamObjects/Ceph Case Study by Ceph Community
Webinar - DreamObjects/Ceph Case Study
Ceph Community
•
1.7K views
Hadoop Hardware @Twitter: Size does matter. by Michael Zhang
Hadoop Hardware @Twitter: Size does matter.
Michael Zhang
•
1K views
Ceph Day New York: Ceph: one decade in by Ceph Community
Ceph Day New York: Ceph: one decade in
Ceph Community
•
828 views
Introduction to BIg Data and Hadoop by Amir Shaikh
Introduction to BIg Data and Hadoop
Amir Shaikh
•
870 views
Introduction to Hadoop and Big Data Processing by Sam Ng
Introduction to Hadoop and Big Data Processing
Sam Ng
•
33 views
Ceph at Spreadshirt (June 2016) by Jens Hadlich
Ceph at Spreadshirt (June 2016)
Jens Hadlich
•
1.8K views
Getting started with big data in Azure HDInsight by Nilesh Gule
Getting started with big data in Azure HDInsight
Nilesh Gule
•
266 views
DevOps Supercharged with Docker on Exadata by MarketingArrowECS_CZ
DevOps Supercharged with Docker on Exadata
MarketingArrowECS_CZ
•
983 views
Compression talk by Ilya Ganelin
Compression talk
Ilya Ganelin
•
534 views
Ceph: A decade in the making and still going strong by Patrick McGarry
Ceph: A decade in the making and still going strong
Patrick McGarry
•
1.3K views
Don't Repeat Our Mistakes! Lessons Learned from Running Go Daddy's Private Cl... by Mike Dorman
Don't Repeat Our Mistakes! Lessons Learned from Running Go Daddy's Private Cl...
Mike Dorman
•
627 views
Presto: SQL-on-Anything. Netherlands Hadoop User Group Meetup by Wojciech Biela
Presto: SQL-on-Anything. Netherlands Hadoop User Group Meetup
Wojciech Biela
•
858 views
Ozone and HDFS's Evolution by DataWorks Summit
Ozone and HDFS's Evolution
DataWorks Summit
•
991 views
Ozone and HDFS’s evolution by DataWorks Summit
Ozone and HDFS’s evolution
DataWorks Summit
•
198 views
Ceph as software define storage by Mahmoud Shiri Varamini
Ceph as software define storage
Mahmoud Shiri Varamini
•
1.4K views
More from Yahoo!デベロッパーネットワーク
ゼロから始める転移学習 by
ゼロから始める転移学習
Yahoo!デベロッパーネットワーク
13.1K views
•
132 slides
継続的なモデルモニタリングを実現するKubernetes Operator by
継続的なモデルモニタリングを実現するKubernetes Operator
Yahoo!デベロッパーネットワーク
4.9K views
•
35 slides
ヤフーでは開発迅速性と品質のバランスをどう取ってるか by
ヤフーでは開発迅速性と品質のバランスをどう取ってるか
Yahoo!デベロッパーネットワーク
1.2K views
•
24 slides
オンプレML基盤on Kubernetes パネルディスカッション by
オンプレML基盤on Kubernetes パネルディスカッション
Yahoo!デベロッパーネットワーク
2K views
•
18 slides
LakeTahoe by
LakeTahoe
Yahoo!デベロッパーネットワーク
1.7K views
•
28 slides
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜 by
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
Yahoo!デベロッパーネットワーク
1.7K views
•
35 slides
More from Yahoo!デベロッパーネットワーク
(20)
ゼロから始める転移学習 by Yahoo!デベロッパーネットワーク
ゼロから始める転移学習
Yahoo!デベロッパーネットワーク
•
13.1K views
継続的なモデルモニタリングを実現するKubernetes Operator by Yahoo!デベロッパーネットワーク
継続的なモデルモニタリングを実現するKubernetes Operator
Yahoo!デベロッパーネットワーク
•
4.9K views
ヤフーでは開発迅速性と品質のバランスをどう取ってるか by Yahoo!デベロッパーネットワーク
ヤフーでは開発迅速性と品質のバランスをどう取ってるか
Yahoo!デベロッパーネットワーク
•
1.2K views
オンプレML基盤on Kubernetes パネルディスカッション by Yahoo!デベロッパーネットワーク
オンプレML基盤on Kubernetes パネルディスカッション
Yahoo!デベロッパーネットワーク
•
2K views
LakeTahoe by Yahoo!デベロッパーネットワーク
LakeTahoe
Yahoo!デベロッパーネットワーク
•
1.7K views
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜 by Yahoo!デベロッパーネットワーク
オンプレML基盤on Kubernetes 〜Yahoo! JAPAN AIPF〜
Yahoo!デベロッパーネットワーク
•
1.7K views
Persistent-memory-native Database High-availability Feature by Yahoo!デベロッパーネットワーク
Persistent-memory-native Database High-availability Feature
Yahoo!デベロッパーネットワーク
•
5.8K views
データの価値を最大化させるためのデザイン~データビジュアライゼーションの方法~ #devsumi 17-E-2 by Yahoo!デベロッパーネットワーク
データの価値を最大化させるためのデザイン~データビジュアライゼーションの方法~ #devsumi 17-E-2
Yahoo!デベロッパーネットワーク
•
7.8K views
eコマースと実店舗の相互利益を目指したデザイン #yjtc by Yahoo!デベロッパーネットワーク
eコマースと実店舗の相互利益を目指したデザイン #yjtc
Yahoo!デベロッパーネットワーク
•
2.2K views
ヤフーを支えるセキュリティ ~サイバー攻撃を防ぐエンジニアの仕事とは~ #yjtc by Yahoo!デベロッパーネットワーク
ヤフーを支えるセキュリティ ~サイバー攻撃を防ぐエンジニアの仕事とは~ #yjtc
Yahoo!デベロッパーネットワーク
•
1.9K views
Yahoo! JAPANのIaaSを支えるKubernetesクラスタ、アップデート自動化への挑戦 #yjtc by Yahoo!デベロッパーネットワーク
Yahoo! JAPANのIaaSを支えるKubernetesクラスタ、アップデート自動化への挑戦 #yjtc
Yahoo!デベロッパーネットワーク
•
2.2K views
ビッグデータから人々のムードを捉える #yjtc by Yahoo!デベロッパーネットワーク
ビッグデータから人々のムードを捉える #yjtc
Yahoo!デベロッパーネットワーク
•
1.8K views
サイエンス領域におけるMLOpsの取り組み #yjtc by Yahoo!デベロッパーネットワーク
サイエンス領域におけるMLOpsの取り組み #yjtc
Yahoo!デベロッパーネットワーク
•
2.1K views
ヤフーのAIプラットフォーム紹介 ~AIテックカンパニーを支えるデータ基盤~ #yjtc by Yahoo!デベロッパーネットワーク
ヤフーのAIプラットフォーム紹介 ~AIテックカンパニーを支えるデータ基盤~ #yjtc
Yahoo!デベロッパーネットワーク
•
2.1K views
Yahoo! JAPAN Tech Conference 2022 Day2 Keynote #yjtc by Yahoo!デベロッパーネットワーク
Yahoo! JAPAN Tech Conference 2022 Day2 Keynote #yjtc
Yahoo!デベロッパーネットワーク
•
2.3K views
新技術を使った次世代の商品の見せ方 ~ヤフオク!のマルチビュー機能~ #yjtc by Yahoo!デベロッパーネットワーク
新技術を使った次世代の商品の見せ方 ~ヤフオク!のマルチビュー機能~ #yjtc
Yahoo!デベロッパーネットワーク
•
1.9K views
PC版Yahoo!メールリニューアル ~サービスのUI/UX統合と改善プロセス~ #yjtc by Yahoo!デベロッパーネットワーク
PC版Yahoo!メールリニューアル ~サービスのUI/UX統合と改善プロセス~ #yjtc
Yahoo!デベロッパーネットワーク
•
1.9K views
モブデザインによる多職種チームのコミュニケーション改善 #yjtc by Yahoo!デベロッパーネットワーク
モブデザインによる多職種チームのコミュニケーション改善 #yjtc
Yahoo!デベロッパーネットワーク
•
2.2K views
「新しいおうち探し」のためのAIアシスト検索 #yjtc by Yahoo!デベロッパーネットワーク
「新しいおうち探し」のためのAIアシスト検索 #yjtc
Yahoo!デベロッパーネットワーク
•
2.1K views
ユーザーの地域を考慮した検索入力補助機能の改善の試み #yjtc by Yahoo!デベロッパーネットワーク
ユーザーの地域を考慮した検索入力補助機能の改善の試み #yjtc
Yahoo!デベロッパーネットワーク
•
2K views
Recently uploaded
The Research Portal of Catalonia: Growing more (information) & more (services) by
The Research Portal of Catalonia: Growing more (information) & more (services)
CSUC - Consorci de Serveis Universitaris de Catalunya
115 views
•
25 slides
Microsoft Power Platform.pptx by
Microsoft Power Platform.pptx
Uni Systems S.M.S.A.
61 views
•
38 slides
State of the Union - Rohit Yadav - Apache CloudStack by
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue
106 views
•
53 slides
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive by
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Network Automation Forum
43 views
•
35 slides
Business Analyst Series 2023 - Week 3 Session 5 by
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10
345 views
•
20 slides
Five Things You SHOULD Know About Postman by
Five Things You SHOULD Know About Postman
Postman
38 views
•
43 slides
Recently uploaded
(20)
The Research Portal of Catalonia: Growing more (information) & more (services) by CSUC - Consorci de Serveis Universitaris de Catalunya
The Research Portal of Catalonia: Growing more (information) & more (services)
CSUC - Consorci de Serveis Universitaris de Catalunya
•
115 views
Microsoft Power Platform.pptx by Uni Systems S.M.S.A.
Microsoft Power Platform.pptx
Uni Systems S.M.S.A.
•
61 views
State of the Union - Rohit Yadav - Apache CloudStack by ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue
•
106 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive by Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Network Automation Forum
•
43 views
Business Analyst Series 2023 - Week 3 Session 5 by DianaGray10
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10
•
345 views
Five Things You SHOULD Know About Postman by Postman
Five Things You SHOULD Know About Postman
Postman
•
38 views
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue by ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue
•
26 views
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... by ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue
•
55 views
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
Jasper Oosterveld
•
27 views
Data Integrity for Banking and Financial Services by Precisely
Data Integrity for Banking and Financial Services
Precisely
•
29 views
Kyo - Functional Scala 2023.pdf by Flavio W. Brasil
Kyo - Functional Scala 2023.pdf
Flavio W. Brasil
•
418 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online by ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue
•
75 views
MVP and prioritization.pdf by rahuldharwal141
MVP and prioritization.pdf
rahuldharwal141
•
37 views
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by ShapeBlue
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
ShapeBlue
•
28 views
HTTP headers that make your website go faster - devs.gent November 2023 by Thijs Feryn
HTTP headers that make your website go faster - devs.gent November 2023
Thijs Feryn
•
26 views
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue by ShapeBlue
What’s New in CloudStack 4.19 - Abhishek Kumar - ShapeBlue
ShapeBlue
•
89 views
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... by ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue
•
64 views
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T by ShapeBlue
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
ShapeBlue
•
38 views
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue
•
25 views
Igniting Next Level Productivity with AI-Infused Data Integration Workflows by Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software
•
317 views
Dragon: A Distributed Object Storage at Yahoo! JAPAN (WebDB Forum 2017 / English Ver.)
1.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Sep. 19. 2017 WebDB Forum Tokyo 1 Yasuharu Goto Dragon: A Distributed Object Storage @Yahoo! JAPAN (English Ver.)
2.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. About me • Yasuharu Goto • Yahoo! JAPAN (2008-) • Software Engineer • Storage, Distributed Database Systems (Cassandra) • Twitter: @ono_matope • Lang: Go 2
3.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Agenda • About Dragon • Architecture • Issues and Future works 3
4.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Dragon
5.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Object Storage • What is Object Storage? • A storage architecure that manages files not as files but as objects. • Instead of providing features like file hierarchy, it provides high availability and scalabiliity. • (Typically) provides REST API, so it can be used easily by applications. • Populer products • AWS: Amazon S3 • GCP: Google Cloud Storage • Azure: Azure Blob Storage • An essential component for modern web development. 5
6.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Dragon • A distributed Object Storage developed at Yahoo! JAPAN. • Design Goals: • High { performance, scalability, availability, cost efficiency } • Written in Go • Released in Jan/2016 (20 months in production) • Scale • deployed in 2 data centers in Japan • Stores 20 billion / 11 PB of objects. 6
7.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Use Cases • 250+ users in Y!J • Various usage • media content • user data, log storage • backend for Presto (experimental) 7 • Yahoo! Auction (image) • Yahoo! News/Topics (image) • Yahoo! Display Ad Network (image/video) • Yahoo! Blog (image) • Yahoo! Smartphone Themes (image) • Yahoo! Travel (image) • Yahoo! Real Estate (image) • Yahoo! Q&A (image) • Yahoo! Reservation (image) • Yahoo! Politics (image) • Yahoo! Game (contents) • Yahoo! Bookstore (contents) • Yahoo! Box (user data) • Netallica (image) • etc...
8.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. S3 Compatible API • Dragon provides an S3 compatible API • aws-sdk, aws-cli, CyberDuck... • Implemented • Basic S3 API (Service, Bucket, Object, ACL...) • SSE (Server Side Encryption) • TODO • Multipart Upload API (to upload large objects up to 5TB) • and more... 8
9.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Performance(with Riak CS/reference) • Dragon: API*1, Storage*3, Cassandra*3 • Riak CS: haproxy*1, stanchion*1, Riak (KV+CS)*3 • Same Hardware except for Cassandra and Stanchion. 9 0 500 1000 1500 2000 2500 3000 3500 1 5 10 50 100 200 400 Requests/sec # of Threads GET Object 10KB Throughput Riak CS Dragon 0 100 200 300 400 500 600 700 800 900 1000 1 5 10 50 100 200 400 Requests/sec # of Threads PUT Object 10KB Throughput Riak CS Dragon
10.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Why?
11.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Why did we build a new Object Storage? • Octagon (2011-2017) • Our 1st Generation Object Storage • Up to 7 PB / 7 Billion Objects / 3,000 Nodes at a time • used for personal cloud storage service, E-Book, etc... • Problems of Octagon • Low performance • Unstable • Expensive TCO • Hard to operate • We started to consider alternative products. 11
12.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Requirements • Our requirements • High performance enough for our services • High scalability to respond to rapid increase in data demands • High availability with less operation cost • High cost efficiency • Mission • To establish a company-wide storage infrastructure 12
13.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Alternatives • Existing Open Source Products • Riak CS • Some of our products introduced it, but it did not meet our performance requiremnt. • OpenStack Swift • Concerns about peformance degration when object count increases. • Public Cloud Providers • cost inefficient • We mainly provides our services with our own DC. We needed a high scalable storage system which runs on-premise. 13
14.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Alternatives 14 OK, let’s make it by ourselves! • Existing Open Source Products • Riak CS • Some of our products introduced it, but it did not meet our performance requiremnt. • OpenStack Swift • Concerns about peformance degration when object count increases. • Public Cloud Providers • cost inefficient • We mainly provides our services with our own DC. We needed a high scalable storage system which runs on-premise.
15.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Architecture
16.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Architecture Overview • Dragon consists of 3 components: API Nodes, Storage Cluster and MetaDB. • API Node • Provides S3 compatible API and serves all user requets. • Storage Node • HTTP file servers that store BLOBs of uploaded objects. • 3 nodes make up a VolumeGroup. BLOBs in each group are periodically synchronized. • MetaDB • Apache Cassandra cluster • Stores metadata of uploaded objects including the location of its BLOB. 16
17.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Architecture 17 API Nodes HTTP (S3 API) BLOB Metadata Storage Cluster VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 Meta DB
18.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Architecture 18 API Nodes HTTP (S3 API) BLOB Metadata Storage Cluster API and Storage nodes are witten in Go 18 VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 Meta DB
19.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Architecture 19 API Nodes BLOBStorage Cluster VolumeGroup: 01 StorageNode 1 HDD4 HDD3 StorageNode 2 HDD4 HDD3 StorageNode 3 HDD4 HDD3 VolumeGroup: 02 StorageNode 4 HDD4 HDD3 StorageNode 5 HDD4 HDD3 StorageNode 6 HDD4 HDD3 API Nodes periodically fetch and cache VolumeGroup configuration from MetaDB. Meta DB id hosts Volumes 01 node1,node2,node3 HDD1, HDD2 02 node4,node5,node6 HDD1, HDD2 volumegroup configuration
20.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Upload 20 API Nodes Meta DB VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 ① HTTP PUT key: bucket1/sample.jpg, size: 1024bytes blob: volumegroup01/hdd1/..., PUT bucket1/sample.jpg ② Metadata 1. When a user uploads an object, the API Node first randomly picks a VolumeGroup and transfers the object’s BLOB to the nodes in the VolumeGroup using HTTP PUT. 2. Stores the metadata including its BLOB location into the MetaDB.
21.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Download 21 API Nodes Meta DB VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 ② HTTP GET key: bucket1/sample.jpg, size: 1024bytes blob: volumegroup01/hdd1/..., PUT bucket1/sample.jpg ① Metadata 1. When a user downloads an Object, the API Node retrieves its metadata from the MetaDB. 2. Requests a HTTP GET to a Storage holding the BLOB based on the metadata and transfer the response to the user.
22.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Failure Recovery 22 API Nodes Meta DB VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 When a Hard Disk fails...
23.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Failure Recovery 23 API Nodes Meta DB VolumeGroup: 01 StorageNode 1 HDD2 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 The drive will be replaced and data that should be in the drive will be recovered by transferring from the other StorageNodes in the VolumeGroup. HDD1
24.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Scaling out 24 API Nodes Meta DB When you add capacity to the cluster... 24 VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 id hosts Volumes 01 node1,node2,node3 HDD1, HDD2 02 node4,node5,node6 HDD1, HDD2 volumegroup Configuration
25.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Scaling out API Nodes Meta DB • ... simply set up a new set of StorageNodes and update the VolumeGroup configuration. 25 VolumeGroup: 01 StorageNode 1 HDD2 HDD1 StorageNode 2 HDD2 HDD1 StorageNode 3 HDD2 HDD1 VolumeGroup: 02 StorageNode 4 HDD2 HDD1 StorageNode 5 HDD2 HDD1 StorageNode 6 HDD2 HDD1 VolumeGroup: 03 StorageNode 7 HDD2 HDD1 StorageNode 8 HDD2 HDD1 StorageNode 9 HDD2 HDD1 id hosts Volumes 01 node1,node2,node3 HDD1, HDD2 02 node4,node5,node6 HDD1, HDD2 03 node7,node8,node9 HDD1, HDD2 volumegroup Configuration
26.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Why not Consistent Hash? • Dragon’s distributed architecture is based on mapping managed by the DB. • Q. Why not Consistent Hash? 26 quoted from: http://docs.basho.com/riak/kv/2.2.3/learn/concepts/clusters/ • Consistent Hash • Data is distributed uniformly by hash of key • Used by many existing distributed systems • e.g. Riak CS, OpenStack Swift • No need for external DB to manage the map
27.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Why not Consistent Hash? • A. Able to add storage capacities without Rebalancing • It heavily consumes Disk I/O, bandwidth, and often takes a long time. • eg. Adding 1 node into 10 node * 720TB cluster which is 100% utilized requires transfering 655TB. 655TB/2Gbps = 30 days • Scaling hash-based DB to more than 1000 nodes with large nodes is very challenging. 27 655TB (720TB*10Node)/11Node = 655TB
28.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Other Pros/Cons • Pros • We can scale out MetaDB and BLOB Storage independently. • Backend Storage Engine is pluggable. • We can easily add or change the storage technology/class in the future • Cons • We need external Database to manage the map • BLOB load would be non-uniform • We’ll rebalance periodically. 28
29.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Storage Node
30.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Storage Hardware • High density Storage Servers for cost efficiency • We need to make use of the full potential of the hardware. 30 https://www.supermicro.com/products/system/4U/6048/SSG-6048R-E1CR90L.cfm
31.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Storage Configuration • HDDs are configured as independent logical volumes instead of RAID • Reason 1: To reduce time to recover when HDDs fail. 31 VolumeGroup StorageNode HDD4 HDD3 HDD2 HDD1 StorageNode HDD4 HDD3 HDD2 HDD1 StorageNode HDD4 HDD3 HDD2 HDD1
32.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Storage Configuration • Reason 2: RAID is slow for random access. 32 Configure Requests per sec Non RAID 178.9 RAID 0 73.4 RAID 5 68.6 Throughput for random access work load. Served by Nginx. 4HDDs. Filesize: 500KB 2.4x Faster than RAID 0
33.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. File Persistence Strategy • Dragon’s Storage Nodes use one file per BLOB. • Strategy to increase robustness by using stable filesystem (ext4). • But, it is known that file systems can not handle large numbers of files well. • It is reported that Swift has poor writing performance as the number of files increases. • To get over this problem, Dragon uses a unique technique. 33 ref.1: “OpenStack Swiftによる画像ストレージの運用” http://labs.gree.jp/blog/2014/12/11746/ ref.2: “画像システムの車窓から|サイバーエージェント 公式エンジニアブログ” http://ameblo.jp/principia-ca/entry-12140148643.html
34.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. File Persistence Strategy • Typical approach: Write files into directories evenly which are created in advance • Swift writes files in this manner. • As the number of files increases, the number of seeks increases and the write throughput decreases. • Cost for updating dentries increases. 34 (256dirs) ... 256 dirs01 02 03 fe ff Seek count and throughput when randomly writing 3 million files in 256 directories. Implemented as a smple HTTP server. Used ab, blktrace, seekwatcher for measurement. photo2.jpgphoto1.jpg photo4.jpgphoto3.jpg Hash function
35.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Dynamic Partitioning • Dynamic Partitioning Approach 1. Create a sequentially numbered directories (partitions). API Nodes upload files into the latest directory. 2. Once the number of files in the partition reaches a threshold (1000 here), the Storage Node creates the next partition and informs the API nodes about it. • Keep the number of files in the directory constant by adding directories at any time. 35 When # of files/dir exceeds approximately 1000, Dragon creates a next directory and uploads there. 0 1 0 New Dir! 1 1000 Files! 2
36.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Dynamic Partitioning 36 • Comparison with hash strategy. Green is Dyamic Partitioning. • Even if file count increases, seek count does not increase, throughput is stable Writing Files in Hash Based Strategy (blue) and Dynamic Partitioning (green)
37.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Microbenchmark Confirmed the maintenance of writing throughput up to 10 Million files for single HDD. 37 Writing throughput when creating up to 10 Million files. We syncd and dropped cache after each creating 100,000 files.
38.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Eventual Consistency • To achieve high availability, writing to Storage Nodes uses eventual consistency with Quorum. • Uploads succeed if writing to the majority of 3 nodes is successful. • Anti-Entropy Repair process synchronizes failed nodes periodically. 38 VolumeGroup: 01 StorageNode 1 HDD4 HDD3 HDD2 HDD1 StorageNode 2 HDD4 HDD3 HDD2 HDD1 StorageNode 3 HDD4 HDD3 HDD2 HDD1 API Nodes OK
39.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Anti-Entropy Repair • Anti-Entropy Repair • Process to compare data between nodes, detect data that is not replicated and recover the consistency. 39 Node B Node C file1 file2 file3 file4 Node A file1 file2 file3 file4 file1 file2 file4 file3
40.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Anti-Entropy Repair • Detect and correct inconsistency of Storage Nodes in a partition unit. 1. Calculate the hash of the names of the files in a partition. 2. Compare the hashes between nodes in a VolumeGroup. There are inconsistencies if the hashes do not match. 3. If the hashes do not match, compare the files in the partition and transfer missing files. • Comparing process is IO efficient as we can cache the hash and the update is concentrated in the latest partition. 40 HDD2 01 60b725f... 02 e8191b3... 03 97880df... HDD2 01 60b725f... 02 e8191b3... 03 97880df... HDD2 01 60b725f... 02 e8191b3... 03 10c9c85c... node1 node2 node3 file1001.data ----- file1003.data file1001.data file1002.data file1003.data file1001.data file1002.data file1003.data transfer file1002.data to node1
41.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. MetaDB
42.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Cassandra • Apache Cassandra • High Availability • Linear Scalability • Low operation cost • Eventual Consistency • Cassandra does not support ACID transactions 42
43.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Cassandra • Tables • VolumeGroup • Account • Bucket • Object • ObjectIndex 43
44.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Object Table • Object Table • Table to retain Object Metadata • size, BLOB location, ACL, Content-Type... • Distributed evenly within the cluster by the partition key which is composed of (bucket, key). 44 bucket key mtime status metadata... b1 photo1.jpg uuid(t2) ACTIVE {size, location, acl...,} b1 photo2.jpg uuid(t1) ACTIVE {size, location, acl....} b3 photo1.jpg uuid(t3) ACTIVE {size, location, acl....} Partition Key
45.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. PUT Object • Update matadata • Within each partition, metadata is clustered in descending order by UUIDv1 based on creation time. • When an object is overwritten, the metadata of the latest version is inserted into the top of the partition. • Since we keep records of multiple versions, no inconsistency occurs even if the object is overwritten concurrently. 45 Clustering Column bucket key mtime status metadata... b1 photo2.jpg uuid(t5) ACTIVE {size, location, acl...,} uuid(t4) ACTIVE {size, location, acl...,} uuid(t1) ACTIVE {size, location, acl...,} b1 photo2.jpg uuid(t1) ACTIVE {size, location, acl....} PUT b1/photo2.jpg (time: t4) PUT b1/photo2.jpg (time: t5) photo2.jpg reaches consistency. (t5 wins)
46.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. GET Object • Retrieving Metadata • Retrieve the first row of the partition with SELECT query • Since the partition is sorted by the creation time, the first row always indicates the current state of the object. 46 bucket key mtime status metadata... b1 photo1.jpg uuid(t5) ACTIVE {size, location, acl...} uuid(t3) ACTIVE {size, location, acl....} b1 photo2.jpg uuid(t1) ACTIVE {size, location, acl....} Partition Key Clustering Column SELECT * FROM bucket=‘b1’ AND key= ‘photo1.jpg’ LIMIT 1; (time:t5)
47.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. DELETE Object • Request Deletion of object • Insert row with deletion status without deleting the row immediately. 47 bucket key mtime status metadata... b1 photo1.jpg uuid(t5) ACTIVE {size, location, acl...} uuid(t3) ACTIVE {size, location, acl....} b1 photo2.jpg uuid(t7) DELETED N/A uuid(t1) ACTIVE {size, location, acl....} DELETE b1/photo1.jpg (time: t7) Partition Key Clustering Column
48.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. GET Object (deleted) • Retrieving Metadata (in case of deleted) • If the retrieved latest row has DELETED status, the object is considered deleted logically and returns error 48 bucket key mtime status metadata... b1 photo1.jpg uuid(t5) ACTIVE {size, location, acl...} uuid(t3) ACTIVE {size, location, acl....} b1 photo2.jpg uuid(t7) DELETED N/A uuid(t1) ACTIVE {size, location, acl....} SELECT * FROM bucket=‘b1’ AND key= ‘photo2.jpg’ LIMIT 1; (time:t7) Partition Key Clustering Column
49.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Object Garbage Collection • Garbage Collection (GC) • Periodically deletes metadata and the linked BLOBs of overwritten or deleted Objects. • Full scan of Object table • The second and subsequent rows of each partition are garbage. GC Deletes them. 49 bucket key mtime status metadata... b1 photo1.jpg uuid(t5) ACTIVE {size, location, acl...} uuid(t3) ACTIVE {size, location, acl....} b1 photo2.jpg uuid(t7) DELETED N/A uuid(t3) ACTIVE {size, location, acl...,} uuid(t1) ACTIVE {size, location, acl....} Garbage Garbage Garbage full scan Upload 0 byte tomstone files to delete the BLOB Partition Key Clustering Column
50.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Object Garbage Collection • GC completed 50 bucket key mtime status metadata... b1 photo1.jpg uuid(t5) ACTIVE {size, location, acl...} b1 photo2.jpg uuid(t7) DELETED N/A GC completed We achieved Concurrency control on Eventual Consistency Database by using partitioning and UUID clustering. Partition Key Clustering Column
51.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Issues and Future Plans
52.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. ObjectIndex Table • ObjectIndex Table • Objects in bucket are sorted and stored in ObjectIndex table in asc order by key name for ListObjects API • Since the partitions get extremely large, objects in a bucket are split into 16 partitions. 52 bucket hash key metadata bucket1 0 key0001 ... key0003 ... key0012 ... key0024 ... ... ... bucket1 1 key0004 ... key0009 ... key0011 ... ... ... bucket1 2 key0002 ... key0005 ... ... ... ... ... ... ... key metadata key0001 ... key0002 ... key0003 ... key0004 ... key0005 ... key0006 ... key0007 ... key0008 ... ... ... Retrieve 16 partitions and merge them to respond ObjectIndex Table Partition Key Clustering Column
53.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Issues • ObjectIndex related problems • Some API requests cause a lot of queries to Cassandra, resulting in high load and high latency. • Because of Cassandra’s limitation, the # of Objects in Bucket is restricted to 32 Billion. • We’d like to eliminate constraints on the number of Objects by introducing a mechanism that dynamically divides the index partition. 53
54.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Future Plans • Improvement of Storage Engine • WAL (Write Ahead Log) based Engine? • Erasure Coding? • Serverless Architecture • Push notification to messaging queues such as Kafka, Pulsar • Integration with other distributed systems • Hadoop, Spark, Presto, etc... 54
55.
Copyrig ht ©
2017 Yahoo Japan Corporation. All Rig hts Reserved. Wrap up • Yahoo! JAPAN is developing a large scale object storage named “Dragon”. • “Dragon” is a highly scalable object storage platform. • We’re going to improve it to meet our new requirements. • Thank you!