Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

of

Deep Learning for News Recommendation Slide 1 Deep Learning for News Recommendation Slide 2 Deep Learning for News Recommendation Slide 3 Deep Learning for News Recommendation Slide 4 Deep Learning for News Recommendation Slide 5 Deep Learning for News Recommendation Slide 6 Deep Learning for News Recommendation Slide 7 Deep Learning for News Recommendation Slide 8 Deep Learning for News Recommendation Slide 9 Deep Learning for News Recommendation Slide 10 Deep Learning for News Recommendation Slide 11 Deep Learning for News Recommendation Slide 12 Deep Learning for News Recommendation Slide 13 Deep Learning for News Recommendation Slide 14 Deep Learning for News Recommendation Slide 15 Deep Learning for News Recommendation Slide 16 Deep Learning for News Recommendation Slide 17 Deep Learning for News Recommendation Slide 18 Deep Learning for News Recommendation Slide 19 Deep Learning for News Recommendation Slide 20 Deep Learning for News Recommendation Slide 21 Deep Learning for News Recommendation Slide 22 Deep Learning for News Recommendation Slide 23 Deep Learning for News Recommendation Slide 24 Deep Learning for News Recommendation Slide 25 Deep Learning for News Recommendation Slide 26 Deep Learning for News Recommendation Slide 27 Deep Learning for News Recommendation Slide 28 Deep Learning for News Recommendation Slide 29 Deep Learning for News Recommendation Slide 30 Deep Learning for News Recommendation Slide 31 Deep Learning for News Recommendation Slide 32
Upcoming SlideShare
Light Roasted Use of Caffe in Yahoo! JAPAN
Next
Download to read offline and view in fullscreen.

10 Likes

Share

Download to read offline

Deep Learning for News Recommendation

Download to read offline

2016年3月20日にYahoo! JAPANで開催された「Deep Learning Tokyo 2016」におけるYahoo! JAPAN 大倉によるYahoo!のトップページにおけるニュース記事のレコメンデーションでDeep Learningを活用した事例に関する発表資料となります。

Deep Learning for News Recommendation

  1. 1. 9RR  ARN V T  S CRd  FRP ZZR NaV RR  YRN V T  b R  PN R  V  LN !  ?6E6C   ,   aa 4))ddd(fN (P (W ) 3JJT   JFURNRL  ASO S   (). G bZ RV  DXb N LN  ?N N  8 NaV
  2. 2. 5USRW  TFLJ  SK  EFMSS!   0 0  KSU   FUWTMSRJ 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt , JUVSRFPN JI   SI PJ IN V b  N aVPYR   RYRPaR  Of  a R   f aRZ  S  RNP  b R  N R   V YNfR ( H Nf    dVYY  aNYX  NO ba  a R   f aRZ   S  a V  Z bYR( ASTNHV   SI PJ H  0  P ZZ  N aVPYR   RYRPaR  Of   bZN  Re R a  N R   V YNfR (
  3. 3. YJUYNJ  SK  WMJ   VWJ 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt -‐‑‒ 1US VNRLc MNVWSUNJV BVJU   KJFW UJV JFUHM   4RLNRJ SVWJI   FUWNHPJV FLJ  YNJ   JVWN FWSU H Nf  dR  V a bPR  OJ  TFUWV   S  a V (
  4. 4. )  2UJFWJ  0UWNHPJ  ?JTUJVJRWFWNSR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt . 1US VNRLc MNVWSUNJV BVJU   KJFW UJV JFUHM   4RLNRJ SVWJI   FUWNHPJV FLJ  YNJ   JVWN FWSU
  5. 5. JR  ON VPNYYf  b R   R V V T  Nba 'R P R ( 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt / 3J&RSNVNRL  0 WS&4RHSIJU 7NT   S  d  cRPa  S  N  N aVPYR 2SUU TW 4RHSIJ 3JHSIJ x ˜x h y h = (W ˜x + b) y = (W0 h + b0 ) ✓ = arg min X L (y, x)
  6. 6. JR  ON VPNYYf  b R   R V V T  Nba 'R P R ( 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 0 3J&RSNVNRL  0 WS&4RHSIJU 7NT   S  d  cRPa  S  N  N aVPYR 2SUU TW 4RHSIJ 3JHSIJ x ˜x h y H V  V  N  T  SRNab R   S a R  N aVPYR(   dRcR  a R R     A   RPR N VYf  P a bPa  N LSSI  NRRJU  TUSI HW  VTFHJ( h = (W ˜x + b) y = (W0 h + b0 ) ✓ = arg min X L (y, x)
  7. 7. 1US VNRLc MNVWSUNJV BVJU   KJFW UJV FLJ  YNJ   JVWN FWSU DM  KSH V  SR  WMJ  NRRJU  TUSI HW 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 1 JFUHM   4RLNRJ SVWJI   FUWNHPJV a  V   RPR N f  a   R NWMNR   -‐‑‒   V  S Z  N   R bR a( H R RS R  dR  PN  CDH  b R   P Z YRe  PYN VgR (
  8. 8. 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 2 AUFNRNRL   NWM  AUNTPJW  SK  0UWNHPJV > 1FVJ  FUWNHPJ 0R  FUWNHPJ  NR   VN NPFU  HFWJLSUNJV 0R  FUWNHPJ  NR RSR&VN NPFU  HFWJLSUNJV h0h1 h2 hT 0 h1 hT 0 h2   RRJU  TUSI HW  TJRFPW?J&HSRVWU HWNSR  PSVV ✓ = arg min X (x0,x1,x2) 2X n=0 L(yn, xn) ↵ log hT 0 h1 hT 0 h2 l   a  PN  P a bPa  ORaaR  NRRJU  TUSI HW  VTFHJ(
  9. 9.  2UJFWJ  BVJU  ?JTUJVJRWFWNSR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 3 1US VNRLc MNVWSUNJV BVJU   KJFW UJV JFUHM   4RLNRJ SVWJI   FUWNHPJV FLJ  YNJ   JVWN FWSU
  10. 10. JR  R P R  O d V T   V a f  a  b R  cRPa Of   RPb R a   Rb NY   Rad X ( 4RHSINRL     SRL& MSW  AJU   J SU 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 1US VNRL  6NVWSU AGHB AGHB AGHB AGHBk k FVW 2 UUJRW BVJU  CJHWSU
  11. 11. CRd  6 CRd  7 CRd  8 4RHSINRL     SRL& MSW  AJU   J SU 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt AGHB AGHB AGHB AGHBk k 8YVPX!! 1US VNRL  6NVWSUFVW 2 UUJRW BVJU  CJHWSU
  12. 12. CRd  6 CRd  7 CRd  8 4RHSINRL     SRL& MSW  AJU   J SU 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt , AGHB AGHB AGHB AGHBk k 1US VNRL  6NVWSUFVW 2 UUJRW H NV V T  dVa  PYVPX  SRR ONPX  Of  7EHH( BVJU  CJHWSU
  13. 13. +   JFUHM    3J&I TPNHFWNSR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt -‐‑‒ 1US VNRLc MNVWSUNJV BVJU   KJFW UJV JFUHM   4RLNRJ SVWJI   FUWNHPJV FLJ  YNJ   JVWN FWSU
  14. 14. +   JFUHM    3J&I TPNHFWNSR •  JR   NcR  NY RN f  P a bPaR  N aVPYR  cRPa   N  a R  b R  cRPa ( •  Db   RZNV V T  aN X  V   Yf  a   V YNf     RN R a  N aVPYR  S Z  a R  b R  cRPa   V #a  Va5 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt .
  15. 15. +   JFUHM    3J&I TPNHFWNSR •  JR   NcR  NY RN f  P a bPaR  N aVPYR  cRPa   N  a R  b R  cRPa ( •  Db   RZNV V T  aN X  V   Yf  a   V YNf     RN R a  N aVPYR  S Z  a R  b R  cRPa   V #a  Va5 CD! 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt /
  16. 16. FbYJ   TPJ JRWFWNSR   1FI  4 F TPJ 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 0  YVXR   PPR ( FRPR a  TNZR   S   Zf  SNc VaR   aRNZ  V   NZR  6(
  17. 17. FbYJ   TPJ JRWFWNSR   1FI  4 F TPJ 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 1 ?JHS JRIJI  KSU   S ccc NZR  6   R bYa KK  HVZR ccc NZR  6   R bYa LL  G a ccc NZR  6   R bYa MM  ? b NY ccc NZR  6   R bYa JJ  G PPR k  YVXR   PPR ( FRPR a  TNZR   S   Zf  SNc VaR   aRNZ  V   NZR  6( 6 aVPYR   S  NYZ a   NZR  P aR a dVa   VhR R a   cV R xsjnop
  18. 18. 3J&I TPNHFWNSR   NWM  0UWNHPJ  CJHWSUV 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 2 ?JHS JRIJI  KSU   S ccc NZR  6   R bYa KK  HVZR ccc NZR  6   R bYa LL  G a ccc NZR  6   R bYa MM  ? b NY ccc NZR  6   R bYa JJ  G PPR k ASS  VN NPFU  a  a R   RcV b   R m ?J SYJ  S Z  a R   RP ZZR R  YV a 6 aVPYR  cRPa xsjnop
  19. 19. 0KWJU  3J&I TPNHFWNSR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt 3 ?JHS JRIJI  KSU   S ccc NZR  6   R bYa KK  HVZR cccEYNfR  V aR cVRd LL  G a ccc NZR  7   R bYa MM  ? b NY ccc NZR  8   R bYa JJ  G PPR k CFUNS V  UJV PWV  YVXR   PPR ( FRPR a  TNZR   S   Zf  SNc VaR   aRNZ  V   NZR  6( xsjnop
  20. 20. 0KWJU  3J&I TPNHFWNSR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt , ?JHS JRIJI  KSU   S ccc NZR  6   R bYa KK  HVZR cccEYNfR  V aR cVRd LL  G a ccc NZR  7   R bYa MM  ? b NY ccc NZR  8   R bYa JJ  G PPR k CFUNS V  UJV PWV  YVXR   PPR ( FRPR a  TNZR   S   Zf  SNc VaR   aRNZ  V   NZR  6( xsjnop •  AMNV  FTTUSFHM   FV  F FUIJI  WS  WMJ  ES RL   HNJRWNVW  0 FUI  NR     ). •  DJ   NPP  INVH VV  F S W  NW  NR  WMJ  TSVWJU   VJVVNSR  SK  DDD   ).  FW  0TUNP   WS  FTTJFU
  21. 21.   FLJ  CNJ  4VWN FWNSR  KSU  ?J&UFRONRL   8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt , 1US VNRLc MNVWSUNJV BVJU   KJFW UJV JFUHM   4RLNRJ SVWJI   FUWNHPJV FLJ  YNJ   JVWN FWSU
  22. 22. DMFW  FUWNHPJV  VMS PI   J  TUSYNIJI  WS   VJUV 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,, 7R  V aR R a  a  ZR JN a  a   RN JR  PN   VPX  b  a R R Of  b R  cRPa (
  23. 23. DMFW  FUWNHPJV  VMS PI   J  TUSYNIJI  WS   VJUV 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,-‐‑‒ 7R  V aR R a  a  ZR JN a  a   RN NcR  a   RN 7R  RN  a  RcRfR H R R  N aVPYR  N R NY  VZ aN a(
  24. 24. 6S  IS   J   RI  V HM  FUWNHPJV •  6TT RTNaR  S Z  a R   V a f  Y T5 l  H  YNaR(         R  N aVPYR  N R  cR f  VZ aN a          Oba  a Rf   NcR     V a VR ( •  : aVZNaR  S Z   aNaVP  SRNab R   S  N aVPYR 5 l  E VOYR  Oba  YR  NPPb NaR( l  8 ZOV NaV   S  NTT RTNaV  N  R aVZNaV ( 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,.
  25. 25. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,/ VaVNY GaNaVP  SRNab R
  26. 26. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,0 VaVNY GaNaVP  SRNab R FCC 8 9f NZVP  SRNab R : aVZNaV  S   a   b
  27. 27. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,1 VaVNY GaNaVP  SRNab R FCC 8 : aVZNaV  S   ,   b FCC 8 9f NZVP  SRNab R
  28. 28. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,2 VaVNY GaNaVP  SRNab R FCC 8 FCC 8 FCC 86TT RTNaV   SRR ONPX : aVZNaV   S  -‐‑‒   b 9f NZVP  SRNab R
  29. 29. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt ,3 VaVNY GaNaVP  SRNab R FCC 8 FCC 8 FCC 8 FCC 8 9f NZVP  SRNab R 6TT RTNaV   SRR ONPX
  30. 30. 4VWN FWNSR   VNRL  ?JH UUJRW   J UFP   JW SUO 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt -‐‑‒ VaVNY GaNaVP  SRNab R FCC 8 FCC 8 FCC 8 FCC 8 9f NZVP  SRNab R 4E   A! FCC   N  N  N cN aNTR  a  OR  NOYR  a  aNXR YFUNF PJ  R JU  SK  WMJ  FLLUJLFWNSR  KJJI FHOV V  a R   R VPaV ( C  SRR ONPX ,  SRR ONPX
  31. 31. 2 UUJRW   WFW V 0PUJFI  FTTPNJI •  9R' b YVPNaV  dVa  N aVPYR  cRPa •  FR' N XV T  b V T  VZ NPa  R aVZNa BRIJU  WJVWNRL •  BNaP V T  ON R    b R  cRPa 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt -‐‑‒ AVSa   bOYR!! 8HF e e e e e e e
  32. 32. ?J FNRNRL   US PJ V •  GR N NaV   S  V aR R a  N  R V RZVP •  8 aV b b  Z RY  b NaV T •  :ea NPaV   S  a R   a f  ORadRR  N aVPYR 8 f VT a   8  , 0  LN  ?N N  8 NaV (  6YY  FVT a  FR R cR (  vwrqiu yt -‐‑‒,
  • dcomrpc

    Jul. 28, 2019
  • map_reduce

    Dec. 12, 2017
  • ssuserc95a65

    Aug. 10, 2016
  • chpark781

    May. 20, 2016
  • hszjy

    Apr. 7, 2016
  • f_prg

    Apr. 1, 2016
  • YoshiakiAmano

    Mar. 31, 2016
  • f2forest

    Mar. 31, 2016
  • JunichiNoda

    Mar. 31, 2016
  • terumba

    Mar. 30, 2016

2016年3月20日にYahoo! JAPANで開催された「Deep Learning Tokyo 2016」におけるYahoo! JAPAN 大倉によるYahoo!のトップページにおけるニュース記事のレコメンデーションでDeep Learningを活用した事例に関する発表資料となります。

Views

Total views

3,209

On Slideshare

0

From embeds

0

Number of embeds

588

Actions

Downloads

73

Shares

0

Comments

0

Likes

10

×