Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Bigornia Sess10 102809


Published on

Published in: Technology
  • Be the first to comment

Bigornia Sess10 102809

  1. 1. Developing an ‘Intelligent’ Flood Management System Imagine the result SAME Water Conference October 28, 2009 Boni Bigornia Vice President ARCADIS
  2. 2. Developing An ‘Intelligent’ Flood Management System
  3. 3. Outline <ul><li>Existing “Systems” and Natural Threats </li></ul><ul><li>Additional Complications </li></ul><ul><li>Needs for an Intelligent Flood System </li></ul><ul><li>The Big Picture – Life Cycle Management </li></ul><ul><li>The Nerve Center </li></ul><ul><li>Smart Levees </li></ul><ul><li>Decision Making Guidebook </li></ul><ul><li>Planning Ahead - Flood Plain Management </li></ul><ul><li>Innovative Measures </li></ul>
  4. 4. What is Real-Time Water Management?
  5. 5. EL. 184.0 ft. EL. 239.0 ft. EL. 228.5 ft. EL. 238.9 ft. EL. 208.0 ft. EL. 201.6 ft. 30,905 AC - FT FLOOD CONTROL 2,498 AC - FT Joint FC and Water Supply Cross Over Weir Weir Separating East & West Pit EL. 188.0 ft. 31,742 AC - FT SPILLWAY SURCHARGE EL. 200.0 ft. Rio Hondo San Gabriel River Taking Line EL. 229.0 ft. 9 - 50’Wx29’H Spillway Gates 55 ft 4 - 30’Wx20H’ Outlet Gates 252 Acres 2,411 Acres 2,498 AC - FT 65,677 AC - FT EL. 213.5 ft. 532 AC - FT Joint FC and Water Supply Based on: WNSG - April 1978 Survey Data WNRH - August 1977 Survey Data EL. 220.15 ft. Parking Lot Ground Floor 3,622 Acres EL. 231.15 ft. Building Ground Floor 50 yr EL 221.8 100 yr EL 227.0 200 yr El 230.0 33,935 AC - FT Flood Basins or Something Else? EO 11988 – Floodplain Management?
  6. 6. Water Management Decisions
  7. 7. Real Time Water Management in the Central Valley - Multi-Purpose Reservoirs flood control conservation
  8. 8. ORO BUL FOL CMN INV BLB SHA Feather Yuba American Consumnes Stony Cr Yolo Bypass Sacramento Basin • [ 79k ] Bend Bridge Tisdale Weir Ord Ferry Moulton Weir Yuba City • Colusa Weir • Sacramento Rio Vista Sutter Bypass Cache Cr Rumsey [ 300k ] [ 100k ] [ 15k ] [ 10k ] [ 20k ] [ Channel Capacity ] [ 5k ] [ 115k ] [ 50k ] [ 120k ] Marysville [ 150k ] • Nicholas • • Fremont Weir • • Mokelumne Antioch • DELTA Systems Considerations 180-yr 80-yr 180-yr
  9. 9. What Could Have Happened? Feather River levee break in ’97 West Sacramento
  10. 10. Water Management Complications
  11. 11. Water Management Complications Storage in Thousand acre-feet Flood control reservation in thousand acre-feet (Negative values for use only with adjustment criteria). Rain Flood Snowmelt Flood Flood Control Diagram for: Friant Dam, Millerton Lake San Joaquin River, California Maximum Flood Control Reservation 390,000 ac-ft Precipitation Parameters 170,000 ac-ft
  12. 12. The Tulare Basin - A Typically Complex Basin FRI PNF TRM SCC ISB Buena Vista Lake Bed Mendota Pool Tulare Lakebed California Aqueduct San Joaquin R. Kings R. (8 kcfs) Kaweah R. Tule R. Kern R. Kern River Intertie (<1kcfs) Mammoth Pool (SCE) 123 kAF Wishon (PG&E) 123 kAF Courtright (PG&E) 128 kAF 390/520 kAF 1,637 sq.mi. 1,000kAF 1,545 sq.mi. 143 kAF 561 sq.mi. 82 kAF 391 sq.mi. 570 kAF 1,009 sq.mi. BDC 30/46 kAF 82 sq.mi. McKay’s Point Madera Canal (1kcfs) Friant-Kern Canal (4kcfs) Chowchilla Canal Eastside Bypass (5.5kcfs) (2.5 kcfs) (4.75 kcfs) (5.5 kcfs) (3.5 kcfs) (4.6 kcfs) (3.2 kcfs) Army Weir Crescent Weir St. John’s R. Cross Crk. 40 k 60-103 k San Joaquin R. Delta-Mendota Canal Porterville (10kcfs) Fresno (8 kcfs) Visalia Bakersfield (125y) (45y) (36y) (333y) Fresno Slough (25y) Cottonwood Crk Gould Canal Fresno Canal
  13. 13. Water Management Decisions for Balancing Impacts Associated Damages Release From Dam $ 2 M $ 400 K $ 100 K 10,000 cfs 3,000 cfs 1,000 cfs 2 ft Water Conservation
  14. 14. Glen Cyn Dam Hoover Dam Little Colorado River Clover Creek Mathews Cyn Dam Pine Cyn Dam Meadow Valley Wash ALMO DAM Bill Williams River Imperial Dam Salt River San Francisco River Stewart Mt. Dam Mormon Flat Dam Horse Mesa Dam Roosevelt Dam Tat Momolikot Dam Coolidge Dam Gila River Santa Cruz River San Pedro River PTRK DAM New Waddell Dam Bartlett Dam Horseshoe Dam Salt River Salt River Santa Rosa Wash Gila River Gila River Granite Reef Dam Verde River Agua Fria Coachella Canal All American Canal Parker Dam Headgate Rock Dam Las Vegas Holbrook Flagstaff Phoenix Yuma Lees Ferry Gila River Colorado River Gulf of California MWD Colorado River Aqueduct . Needles . Parker Palo Verde Div. Dam . Blythe Laguna Dam Morelos Dam . Tucson Salton Sea Davis Dam [ 45 K ] [ 28 K ] [ 40 K ] [ 28 K ] [ 20 K ] [ 180 K ] [ 180 K ] [ 7 K ] [ 4 K ] [ 35 K ] [ 7 K ] [ 0.3 K ] [ 10 K ] [ 5 K ] [ 20 K ] CA Mexico AZ UT NV Water Management – Risk Management 1983 1993
  15. 15. Water Management to Avoid Dam Spills!!
  16. 16. Painted Rock Dam Spillway Erosion Didn’t look bad during the flood!
  17. 17. Impacts of Vegetation on Levees Vegetation attracts burrowing animals which create tunnels and create piping and seepage problems
  18. 18. … from 1994 pub indicating species endangerment patterns in the U.S. greatest number next greatest least greatest minimal number Endangered Species Hot Spots
  20. 20. Threats to a Water Control Manager/Flood System <ul><li>Riverine floods </li></ul><ul><li>Debris flows, fires </li></ul><ul><li>Hurricane floods, surges, wind </li></ul><ul><li>1986 Cost-Sharing - Systems aren’t systems </li></ul><ul><li>Juggling conflicting interests </li></ul><ul><li>Funding shortages or priorities </li></ul><ul><li>Maintenance of levees </li></ul><ul><li>Policies versus laws versus politics </li></ul>
  21. 21. Complications to Consider in all Water Management Decisions <ul><li>Laws and legal repercussions – rule curves, NEPA </li></ul><ul><li>National, State, and local policies </li></ul><ul><li>Funds available now and in the future (PL 84-99) </li></ul><ul><li>Uncertainties and consequences (gaging, model and data imperfections) </li></ul><ul><li>Unanticipated constraints (surfers, nests) </li></ul><ul><li>System impacts </li></ul>
  22. 22. Balancing/Juggling Project Purposes and Public Values Flood Control Hydro- power Reservoir recreation Urban Runoff D/s levees D/s fish Reservoir fish D/s wildlife Reservoir Wildlife D/s Recreation Laws Dissolved Oxygen Temperature M&I Water Supply Agriculture Reservoir Easements Public Politicians Resource Agencies
  23. 23. A Water Control Manager’s Needs for Flood Risk Management <ul><li>More data </li></ul><ul><li>Better integrated models </li></ul><ul><li>More knowledge of physics – verified analytic techniques </li></ul><ul><li>Better understanding of risks and uncertainties </li></ul><ul><li>Better understanding of system impacts and consequences </li></ul><ul><li>Decision making tools to understand risks and tradeoffs of decisions in the real-time </li></ul><ul><li>Decision making tools to understand impacts of decisions and actions in the long term – life cycle planning </li></ul>
  24. 24. The Water Control Manager MUST Consider the Bigger Picture <ul><li>Real-Time Operations (daily decisions) </li></ul><ul><li>Contingencies (emergency management) </li></ul><ul><li>Planning and Design (resiliency, robustness, and sustainability) </li></ul><ul><li>Funding and Support Programs (federal, state, local, non-government organizations, private interests) </li></ul>
  25. 25. The Big Picture is Life Cycle Management <ul><li>Cycle of Events </li></ul><ul><ul><li>Actions Before an Event – Planning, Designing, Building </li></ul></ul><ul><ul><li>Actions During an Event – Real Time </li></ul></ul><ul><ul><li>Actions After an Event – Recovery </li></ul></ul><ul><ul><li>Evaluation, Preparation… </li></ul></ul><ul><ul><li>i.e., Actions Before an Event – Planning, Designing, Building </li></ul></ul>Natural Event Human Activity Actions During Event Response After Event Modify Human Activity Preparation in case of natural event
  26. 26. Intelligent Flood Protection System
  27. 27. Key Components in a Nerve Center <ul><li>New technologies, research, and lessons learned (New Orleans, IJkDijk, ERDC, Deltares, NOAA) </li></ul><ul><li>Linking databases and models </li></ul><ul><li>Increased monitoring and high-level analyses </li></ul><ul><li>Coordinated action plans </li></ul><ul><li>Contingency plans, and redundant communication chains </li></ul><ul><li>Decision making tools </li></ul><ul><li>Life Cycle Planning Tools </li></ul>
  28. 28. Top-down View of Information Needs Meteorology Water levels Breach locations Flood mapping
  29. 29. Nerve Center – Data In <ul><li>Where Water Management </li></ul><ul><li>Decisions are made </li></ul><ul><li>based on: </li></ul><ul><li>Smart Levees </li></ul><ul><li>Other telemetry </li></ul><ul><li>Forecasting Systems </li></ul><ul><li>GIS </li></ul><ul><li>Underlying Models </li></ul><ul><li>Trigger Thresholds </li></ul>
  30. 30. Inspection and Monitoring Data Continuous Electric Sounding Thermal Infrared Spectroscopy Laser Scanning
  31. 31. And Remote Levee Sensor Monitoring Data- “Smart Levees” **BOTDR = Brillouin Optical Time Domain Reflectometry
  32. 32. IJkdijk – Slope Stability test site IJkdijk – Slope Stability Test Site
  33. 33. Macro Stability Experiment The levee was subjected to natural forces by several activities under controlled circumstances and collapsed on Saturday the 27th of September at 16.02 PM.
  34. 34. One Sensor System – Network of GeoBeads™ <ul><li>Based on chipsensors </li></ul><ul><li>Multiple parameters </li></ul><ul><li>Focussed on ground stability monitoring </li></ul><ul><li>Real time data gathering </li></ul><ul><li>Modular and scalable network </li></ul><ul><li>‘ Plug and measure’ </li></ul><ul><li>Remote visualisation & interpretation </li></ul>L x D: 150 x 22 mm 1
  35. 35. A Second Sensor System - HydroDetect Geotextile Fabric with Fiber Optics Water channel (hole, crack, root) WATER Leak detection : Warning! 2
  36. 36. A Third Sensor System – Ported Cable with Fiber Optics tested by ERDC 3
  37. 37. Example Design Indicating all Sensor Systems Dutch Experiences on Levees
  38. 38. Leaky cable resistivity GeoBeads GeoDETECT Water depth & temperature Gold, Silver + Bronze “ Gold” “ Bronze” “ Silver”
  39. 39. SMART Levee Test System GeoBeads Pore Pressure, Temperature and Inclinometer MEMS GeoDETECT Fiber optic temperature and stress Leaky Cable Resistivity Water Depth and Temperature Sensors Meteorological data station LAN WAN Iridium or VSAT Monitoring and analysis center
  40. 40. Key Levee Data piezometer_point borehole_point sand_boil_point flood_fight_point levee_failure_point cross_section_line encroachment_point floodwall_line levee_centerline protected_area pump_station_point levee_relief_well_point closure_structure_line levee_crossing_point levee_station_point gravity_drain_line rehabilitation_line toe_drain_line
  41. 42. GIS overlays to support real-time modeling <ul><li>Roads </li></ul><ul><li>Utilities </li></ul><ul><li>Hospitals </li></ul><ul><li>Safe houses </li></ul><ul><li>Sewer and water treatment plants </li></ul><ul><li>Vegetation and ecosystem </li></ul><ul><li>Land development </li></ul><ul><li>Construction stockpiles and equipment warehouses </li></ul>
  42. 43. Underlying Models <ul><li>Precipitation </li></ul><ul><li>Hydrology and hydraulics </li></ul><ul><li>Hurricane tracks, wind and surge </li></ul><ul><li>Infrastructure response to loadings </li></ul><ul><li>Levee integrity and system response </li></ul><ul><li>Scenario Floodplain flows </li></ul><ul><li>Evacuation </li></ul><ul><li>Special model considerations </li></ul>
  43. 44. DATA TRANSLATION STRENGTH ON MAP X  X  F grond geom. stijgh. STRENGTH CHARACTERISTIC CONSEQUENCES INPUT CONVERSION OUTPUT levee sections calcuation profile design situation SCHEMATICS CLASSICAL ASSESSMENT ETL, EC, ER, EM SOPs Judgement 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 1,6 geometriy geology groundwater etc.
  44. 45. <ul><li>Integration of hydraulic loads and boundary conditions </li></ul><ul><li>Levee strengths </li></ul><ul><li>Forecasting Systems </li></ul><ul><li>Failure mechanisms </li></ul><ul><li>Flood scenarios </li></ul>Nerve Center – Decisions Out
  45. 46. Simplified Communications
  46. 47. Phased Action Plans and Contingency Planning <ul><li>System Operations/Water Management Decisions (e.g., SOPs, operational deviations, coordination meetings) </li></ul><ul><li>Advance Notifications and Warnings </li></ul><ul><li>Flood Fighting Prioritization </li></ul><ul><li>Evacuation Options </li></ul><ul><li>Rescues </li></ul>
  47. 48. Pre-Established Evacuation Plan Modeling <ul><li>Demand Data </li></ul><ul><li>Population Types </li></ul><ul><ul><li>Permanent Residents </li></ul></ul><ul><li>Transient Population </li></ul><ul><li>Special Facilities </li></ul><ul><li>Vehicle Occupancy Rates (VORs) </li></ul>Vehicular demand Warning System EAS, TARs, Sirens Warning diffusion and mobilization distribution curves Loading distribution curves <ul><li>Supply Data </li></ul><ul><ul><li>Speed Limits </li></ul></ul><ul><li>Number of Lanes </li></ul><ul><li>Contraflow Plan </li></ul>Traffic flow capacities Traffic Assignment Models (User Equilibrium, System Equilibrium, Dynamic Assignment) Measure of Effectiveness (MOEs) : Evacuation time estimates (ETEs), clearance times, average travel times, queuing analysis, average traffic flow, average speed, average density. Flood Modeling Figure XXX: Intelligent & Integrated Evacuation Planning, Modeling, and Response
  48. 49. Evacuation Plan Activation
  49. 50. Contingency Planning <ul><li>Safe Houses </li></ul><ul><li>Rapid Breach Repair </li></ul><ul><li>Levee Superiority (reinforced overflow levees) </li></ul><ul><li>Boat/Helicopter rescue </li></ul>
  50. 51. Trigger Thresholds Graphic <ul><li>Actual Rainfall </li></ul><ul><li>Forecasted Wind and Surge </li></ul><ul><li>Forecasted Water Levels </li></ul><ul><li>Forecasted Levee Response to Loads </li></ul><ul><li>Actual Levee Response to Loads </li></ul><ul><li>System Performance Observations </li></ul><ul><li>Special Circumstances/Emergencies </li></ul>
  51. 52. Decision-Making <ul><li>Use pre-established (and pre-practiced) Guidebook that… </li></ul><ul><ul><li>Uses pre-established trigger thresholds and forecast models to outlay risks and tradeoffs </li></ul></ul><ul><ul><li>Evaluates potential consequences to life safety and property, including critical infrastructure </li></ul></ul><ul><ul><li>Establishes a process to communicate status and potential hazard scenarios to decision-makers on federal, state, and local emergency teams </li></ul></ul><ul><ul><li>Evaluates support from federal, state, and local sources and engage resources </li></ul></ul><ul><ul><li>Adjusts the action item flowchart as risks are updated by data and field observations </li></ul></ul>
  52. 53. Continuous Planning <ul><li>Life Cycle Planning! </li></ul><ul><li>Actions BEFORE an event planning, designing, building </li></ul><ul><li>Actions DURING an event operation </li></ul><ul><li>Actions AFTER an event recovery, evaluation, preparation </li></ul>
  53. 54. Flood Risk Management – Buying Down Risk
  54. 55. Flood Plain Management Graphic <ul><li>Public information </li></ul><ul><li>Mapping and regulations </li></ul><ul><li>Evacuation Plans </li></ul><ul><li>Flood preparedness </li></ul><ul><li>Non Structural Floodproofing </li></ul><ul><li>FEMA Community Rating System and USACE Floodplain Management Plans </li></ul><ul><li>Innovative Measures </li></ul>
  55. 56. NOAA Hurricane Hunters P-3 Hurricane Hunter “notches” (Doppler RADAR mounted under fuselage). Preparing Wind Dropsondes and AXBT’s
  56. 57. Innovative Measures Glass levees, floating structures
  57. 58. Innovative Measures Concrete levee and concrete sliding flood gates
  58. 59. Innovative Measures Levee Superiority
  59. 60. Summary
  60. 61. Who is ARCADIS? ARCADIS offers project and construction management, design, engineering and consultancy services on issues in society relating to Infrastructure, Environment, Buildings and Water.
  61. 62. Lessons Learned… 28 October 2009 © 2009 ARCADIS
  62. 63. Lessons Learned
  63. 64. Questions?