SlideShare a Scribd company logo
1 of 18
Download to read offline
Prometheus Tokyo Meetup #2
2019/6/3
Takuhiro Yoshida <takuhyos@zlab.co.jp>
Grafana Dashboards as Code
▶「第8章 アプリケーションを運⽤する」
+ 8.2 メトリクスモニタリング
▶Kubernetes環境でのPrometheus/
Grafanaの利⽤について解説
広告⚠
+ +
本⽇のテーマ:
Grafanaのダッシュボードをどう管理するか?
Dashboards as JSON
Dashboards as JSON{
…
"panels": [
{
…
"id": 2,
"legend": {
….
}
"targets": [
{
"expr": "count(kube_deployment_created) by (namespace)",
"format": "time_series",
"intervalFactor": 2,
"legendFormat": "{{namespace}}",
"refId": "A"
}
],
…
"title": "Number of deployment count by namespace",
…
Export
Import/Provisioning
GitOps ☺
JSON
{
…
}Export
Commit/Push
JSON
{
…
}
Import/Provisioning
#
▶ 監視対象が増えると同じようなグラフを作ることが多い
+ e.g. HTTPリクエストのリクエスト数/エラー数/レイテンシ
▶ UIでの複製が⾯倒
▶ 後で修正を反映するのが⼤変
Duplicate 🤔
▶ メタデータが多く重要な差分が分かりづらい
Review 😢
Dashboards as Jsonnet
Jsonnet
▶ https://jsonnet.org/
▶ JSON形式の設定ファイルを⽣成するためのテンプレーティング⾔語
▶ JSON + 変数、算術演算、関数、import式など
▶ JSONのスーパーセット
+ 通常のJSONはJsonnetファイルとして扱える
出典: https://jsonnet.org/
Grafonnet
▶ https://github.com/grafana/grafonnet-lib
▶ Grafanaダッシュボードを⽣成するためのJsonnetライブラリ
▶ Grafanaのダッシュボードやパネルを表すJSONを⽣成するためのJsonnet関数を
提供
▶ GrafanaのJSONを⽣成できる類似のツール
+ grafanalib
+ https://github.com/weaveworks/grafanalib
+ Python製
Dashboards as Jsonnet
local grafana = import 'grafonnet/grafana.libsonnet';
local dashboard = grafana.dashboard;
local graphPanel = grafana.graphPanel;
local prometheus = grafana.prometheus;
local resourcePanel(resource) =
graphPanel.new(
title='Number of %s count by namespace' % resource,
datasource='prometheus',
).addTarget(
prometheus.target(
expr='count(kube_%s_created) by (namespace)' % resource,
legendFormat='{{namespace}}',
)
);
local gridPos = {
x: 0,
y: 0,
w: 24,
h: 8,
};
dashboard.new(
'grafonnet: Kubernetes resource count',
)
.addPanel(resourcePanel('deployment'), gridPos)
.addPanel(resourcePanel('daemonset'), gridPos)
.addPanel(resourcePanel('job'), gridPos)
.addPanel(resourcePanel('cronjob'), gridPos)
.addPanel(resourcePanel('pod'), gridPos)
.addPanel(resourcePanel('configmap'), gridPos)
.addPanel(resourcePanel('secret'), gridPos)
.addPanel(resourcePanel('service'), gridPos)
.addPanel(resourcePanel('endpoint'), gridPos)
▶ import式で別ファイルの関数を使える
+ Grafonnet(grafana.libsonnet)を利⽤
▶ 共通部分を関数として定義可能
+ PromQLの⼀部(メトリクス名、ラベル)
を引数で置換
①
①
②
②
③
③
例: Kubernetesのリソース数を種類ごとに表示するダッシュボード
GitOps ☺
Jsonnet
{
…
}
Commit/Push
JSON
{
…
}
Import/Provisioning
JSON
{
…
}Generate
Jsonnet
{
…
}
#
Duplicate ☺
local grafana = import 'grafonnet/grafana.libsonnet';
local dashboard = grafana.dashboard;
local graphPanel = grafana.graphPanel;
local prometheus = grafana.prometheus;
local resourcePanel(resource) =
graphPanel.new(
title='Number of %s count by namespace' % resource,
datasource='prometheus',
).addTarget(
prometheus.target(
expr='count(kube_%s_created) by (namespace)' % resource,
legendFormat='{{namespace}}',
)
);
local gridPos = {
x: 0,
y: 0,
w: 24,
h: 8,
};
dashboard.new(
'grafonnet: Kubernetes resource count',
)
.addPanel(resourcePanel('deployment'), gridPos)
.addPanel(resourcePanel('daemonset'), gridPos)
.addPanel(resourcePanel('job'), gridPos)
.addPanel(resourcePanel('cronjob'), gridPos)
.addPanel(resourcePanel('pod'), gridPos)
.addPanel(resourcePanel('configmap'), gridPos)
.addPanel(resourcePanel('secret'), gridPos)
.addPanel(resourcePanel('service'), gridPos)
.addPanel(resourcePanel('endpoint'), gridPos)
▶ 関数、importで共通化
▶ 複製したグラフも⼀括修正可能
Review ☺
▶ 差分も重要な部分だけでわかりやすい
まとめ
Dashboards as Code
▶ Grafanaのダッシュボードはコードで管理すると便利
+ GitOps
▶ Jsonnet/Grafonnetを使うことでグラフの複製やレビュー効率を改善
+ グラフや設定の共通化
+ わかりやすい差分
▶ Qiita
+ 「Dashboards-as-Code: Grafanaダッシュボードをコードから⽣成する」
+ https://qiita.com/takuhiro/items/eb79ec17a667faba8be2
Thank you !

More Related Content

What's hot

Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Kohei Tokunaga
 
Fluentdのお勧めシステム構成パターン
Fluentdのお勧めシステム構成パターンFluentdのお勧めシステム構成パターン
Fluentdのお勧めシステム構成パターンKentaro Yoshida
 
マイクロサービスバックエンドAPIのためのRESTとgRPC
マイクロサービスバックエンドAPIのためのRESTとgRPCマイクロサービスバックエンドAPIのためのRESTとgRPC
マイクロサービスバックエンドAPIのためのRESTとgRPCdisc99_
 
Where狙いのキー、order by狙いのキー
Where狙いのキー、order by狙いのキーWhere狙いのキー、order by狙いのキー
Where狙いのキー、order by狙いのキーyoku0825
 
Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編Masahito Zembutsu
 
BuildKitの概要と最近の機能
BuildKitの概要と最近の機能BuildKitの概要と最近の機能
BuildKitの概要と最近の機能Kohei Tokunaga
 
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...NTT DATA Technology & Innovation
 
アーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーションアーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーションMasahiko Sawada
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~NTT DATA OSS Professional Services
 
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)NTT DATA Technology & Innovation
 
こんなに使える!今どきのAPIドキュメンテーションツール
こんなに使える!今どきのAPIドキュメンテーションツールこんなに使える!今どきのAPIドキュメンテーションツール
こんなに使える!今どきのAPIドキュメンテーションツールdcubeio
 
ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方Yoshiyasu SAEKI
 
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方Amazon EKS上の開発体験を最大化するプレビュー環境の作り方
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方理弘 山崎
 
異次元のグラフデータベースNeo4j
異次元のグラフデータベースNeo4j異次元のグラフデータベースNeo4j
異次元のグラフデータベースNeo4j昌桓 李
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Akihiro Suda
 
DockerとPodmanの比較
DockerとPodmanの比較DockerとPodmanの比較
DockerとPodmanの比較Akihiro Suda
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...Preferred Networks
 
コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」Masahito Zembutsu
 
人生がときめくAPIテスト自動化 with Karate
人生がときめくAPIテスト自動化 with Karate人生がときめくAPIテスト自動化 with Karate
人生がときめくAPIテスト自動化 with KarateTakanori Suzuki
 

What's hot (20)

Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
 
Fluentdのお勧めシステム構成パターン
Fluentdのお勧めシステム構成パターンFluentdのお勧めシステム構成パターン
Fluentdのお勧めシステム構成パターン
 
マイクロサービスバックエンドAPIのためのRESTとgRPC
マイクロサービスバックエンドAPIのためのRESTとgRPCマイクロサービスバックエンドAPIのためのRESTとgRPC
マイクロサービスバックエンドAPIのためのRESTとgRPC
 
Where狙いのキー、order by狙いのキー
Where狙いのキー、order by狙いのキーWhere狙いのキー、order by狙いのキー
Where狙いのキー、order by狙いのキー
 
Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編
 
BuildKitの概要と最近の機能
BuildKitの概要と最近の機能BuildKitの概要と最近の機能
BuildKitの概要と最近の機能
 
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
PostgreSQL開発コミュニティに参加しよう! ~2022年版~(Open Source Conference 2022 Online/Kyoto 発...
 
アーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーションアーキテクチャから理解するPostgreSQLのレプリケーション
アーキテクチャから理解するPostgreSQLのレプリケーション
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
 
分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)分散トレーシング技術について(Open tracingやjaeger)
分散トレーシング技術について(Open tracingやjaeger)
 
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)
Apache Bigtopによるオープンなビッグデータ処理基盤の構築(オープンデベロッパーズカンファレンス 2021 Online 発表資料)
 
こんなに使える!今どきのAPIドキュメンテーションツール
こんなに使える!今どきのAPIドキュメンテーションツールこんなに使える!今どきのAPIドキュメンテーションツール
こんなに使える!今どきのAPIドキュメンテーションツール
 
ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方
 
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方Amazon EKS上の開発体験を最大化するプレビュー環境の作り方
Amazon EKS上の開発体験を最大化するプレビュー環境の作り方
 
異次元のグラフデータベースNeo4j
異次元のグラフデータベースNeo4j異次元のグラフデータベースNeo4j
異次元のグラフデータベースNeo4j
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
 
DockerとPodmanの比較
DockerとPodmanの比較DockerとPodmanの比較
DockerとPodmanの比較
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」コンテナの作り方「Dockerは裏方で何をしているのか?」
コンテナの作り方「Dockerは裏方で何をしているのか?」
 
人生がときめくAPIテスト自動化 with Karate
人生がときめくAPIテスト自動化 with Karate人生がときめくAPIテスト自動化 with Karate
人生がときめくAPIテスト自動化 with Karate
 

Similar to Grafana Dashboards as Code

Azure IoT Edge で Custom Vision
Azure IoT Edge で Custom VisionAzure IoT Edge で Custom Vision
Azure IoT Edge で Custom VisionYoshitaka Seo
 
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会Jumpei Ogawa
 
Microsoft Graph APIを活用した社内アプリケーション開発
Microsoft Graph APIを活用した社内アプリケーション開発Microsoft Graph APIを活用した社内アプリケーション開発
Microsoft Graph APIを活用した社内アプリケーション開発Yuki Hattori
 
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようPreview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようDaisuke Masubuchi
 
node+socket.io+enchant.jsでチャットゲーを作る
node+socket.io+enchant.jsでチャットゲーを作るnode+socket.io+enchant.jsでチャットゲーを作る
node+socket.io+enchant.jsでチャットゲーを作るKiyoshi SATOH
 
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)Hiroaki KOBAYASHI
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Preferred Networks
 
Djangoフレームワークの紹介
Djangoフレームワークの紹介Djangoフレームワークの紹介
Djangoフレームワークの紹介Shinya Okano
 
CodeIgniterによるPhwittr
CodeIgniterによるPhwittrCodeIgniterによるPhwittr
CodeIgniterによるPhwittrkenjis
 
Play2 scalaを2年やって学んだこと
Play2 scalaを2年やって学んだことPlay2 scalaを2年やって学んだこと
Play2 scalaを2年やって学んだことdcubeio
 
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database AnalyticsPL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database AnalyticsKohei KaiGai
 
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう![Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!Tomomi Imura
 
Seasarプロジェクト徹底攻略
Seasarプロジェクト徹底攻略Seasarプロジェクト徹底攻略
Seasarプロジェクト徹底攻略takezoe
 
msgraph: Terraform provider for Microsoft Graph
msgraph: Terraform provider for Microsoft Graphmsgraph: Terraform provider for Microsoft Graph
msgraph: Terraform provider for Microsoft Graphyaegashi
 
Wasm blazor and wasi 2
Wasm blazor and wasi 2Wasm blazor and wasi 2
Wasm blazor and wasi 2Takao Tetsuro
 
Chrome Extensionsの基本とデザインパターン
Chrome Extensionsの基本とデザインパターンChrome Extensionsの基本とデザインパターン
Chrome Extensionsの基本とデザインパターンYoichiro Tanaka
 
Jetpack Library 事始め
Jetpack Library 事始めJetpack Library 事始め
Jetpack Library 事始めTomohiro Kaizu
 
PyConAPAC2023 ワークフローエンジン Apache Airflowを用いた 大規模データパイプライン構築と改善
PyConAPAC2023 ワークフローエンジン  Apache Airflowを用いた 大規模データパイプライン構築と改善PyConAPAC2023 ワークフローエンジン  Apache Airflowを用いた 大規模データパイプライン構築と改善
PyConAPAC2023 ワークフローエンジン Apache Airflowを用いた 大規模データパイプライン構築と改善株式会社MonotaRO Tech Team
 

Similar to Grafana Dashboards as Code (20)

Azure IoT Edge で Custom Vision
Azure IoT Edge で Custom VisionAzure IoT Edge で Custom Vision
Azure IoT Edge で Custom Vision
 
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会
QML を用いた YouTube クライアントの作成 - 関東 Qt 勉強会
 
Microsoft Graph APIを活用した社内アプリケーション開発
Microsoft Graph APIを活用した社内アプリケーション開発Microsoft Graph APIを活用した社内アプリケーション開発
Microsoft Graph APIを活用した社内アプリケーション開発
 
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみようPreview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
Preview: 世界中のゲーム分析をしてきたPlayFabが大進化!一緒に裏側の最新データ探索の仕組みを覗いてみよう
 
node+socket.io+enchant.jsでチャットゲーを作る
node+socket.io+enchant.jsでチャットゲーを作るnode+socket.io+enchant.jsでチャットゲーを作る
node+socket.io+enchant.jsでチャットゲーを作る
 
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)
仕事の手離れを良くする手段としての、静的検査のあるテンプレートエンジン (YATT::Lite talk at 2014 テンプレートエンジンNight)
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
Djangoフレームワークの紹介
Djangoフレームワークの紹介Djangoフレームワークの紹介
Djangoフレームワークの紹介
 
CodeIgniterによるPhwittr
CodeIgniterによるPhwittrCodeIgniterによるPhwittr
CodeIgniterによるPhwittr
 
Tekton 入門
Tekton 入門Tekton 入門
Tekton 入門
 
Play2 scalaを2年やって学んだこと
Play2 scalaを2年やって学んだことPlay2 scalaを2年やって学んだこと
Play2 scalaを2年やって学んだこと
 
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database AnalyticsPL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
PL/CUDA - Fusion of HPC Grade Power with In-Database Analytics
 
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう![Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!
[Japan M365 Dev UG] Teams Toolkit v4 を使ってみよう!
 
Seasarプロジェクト徹底攻略
Seasarプロジェクト徹底攻略Seasarプロジェクト徹底攻略
Seasarプロジェクト徹底攻略
 
msgraph: Terraform provider for Microsoft Graph
msgraph: Terraform provider for Microsoft Graphmsgraph: Terraform provider for Microsoft Graph
msgraph: Terraform provider for Microsoft Graph
 
20120118 titanium
20120118 titanium20120118 titanium
20120118 titanium
 
Wasm blazor and wasi 2
Wasm blazor and wasi 2Wasm blazor and wasi 2
Wasm blazor and wasi 2
 
Chrome Extensionsの基本とデザインパターン
Chrome Extensionsの基本とデザインパターンChrome Extensionsの基本とデザインパターン
Chrome Extensionsの基本とデザインパターン
 
Jetpack Library 事始め
Jetpack Library 事始めJetpack Library 事始め
Jetpack Library 事始め
 
PyConAPAC2023 ワークフローエンジン Apache Airflowを用いた 大規模データパイプライン構築と改善
PyConAPAC2023 ワークフローエンジン  Apache Airflowを用いた 大規模データパイプライン構築と改善PyConAPAC2023 ワークフローエンジン  Apache Airflowを用いた 大規模データパイプライン構築と改善
PyConAPAC2023 ワークフローエンジン Apache Airflowを用いた 大規模データパイプライン構築と改善
 

Grafana Dashboards as Code