Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Create ML - Categorization and Quantity Estimation

71 views

Published on

@STT Meetup#3 WWDC2018 参加報告会

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Create ML - Categorization and Quantity Estimation

  1. 1. “Any kid can do it. “ 👧👦 Create ML 🤖 Hanawa Takuro LIFULL Co., Ltd.
  2. 2. $Hanawa Takuro facebook.com/takuro.hanawa 🏢LIFULL Co.,Ltd. iOS Engineer / WWDC 🤵🌹Bachelor Japan
  3. 3. 😟
  4. 4. Categorization and Quantity Estimation 📝📈 “ ”
  5. 5. Agenda • Preparing the data set 📊 • Start training 🤖 • Export model 🖨 • Demo 💪
  6. 6. Preparing the data set 📝 • MLDataTable: • MLDataColumn: 
 MLDataValueConvertible 
 (Array, Dictionary ) • MLDataValue: 
 Int, Double, String, …
  7. 7. Preparing the data set 📝 • CSV JSON
  8. 8. Preparing the data set 📝 • 🚢 • pclass: 🎟
 (1: , 2: , 3: ) • sex: 👫 • age: ⌛ • survived: 💀 (0: , 1: ) https://github.com/Geoyi/Cleaning-Titanic-Data
  9. 9. Preparing the data set 📝
  10. 10. Start training 🤖
  11. 11. Start training 🤖 • CSV MLDataTable • • MLRegressor( )
  12. 12. Start training 🤖 • MLDataTable MLDataValueConvertible 😡
  13. 13. Start training 🤖 • • Iteration: ( ) • Elapsed Time: • Training/Validation-max_error: / • Training/Validation-rmse: / 🤔
  14. 14. Start training 🤖 • MLRegressor MLRegressorMetrics Training/Validation > Training Accuracy: 66.47823164748654
  15. 15. 🤗 /
  16. 16. Export model 🖨
  17. 17. Start training 🤖 • MLRegressor write(to:metadata:) MLModel • playgroundSharedDataDirectory Documents ”Shared Playground Data”
  18. 18. Export model 🖨
  19. 19. ❌ ❌❌ 😂
  20. 20. Demo 💪 Qiita: Create ML https://qiita.com/hanawat/items/63176648a52b5e0b985b Qiita: What’s New in Swift4.2 https://qiita.com/hanawat/items/4605f9e357c8794b58d7

×