SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Successfully reported this slideshow.
Activate your 14 day free trial to unlock unlimited reading.
119.
参考文献
◆論文
[Belinich+ 89] Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper, G. F. (1989).
The ALARM monitoring system: A case study with two probabilistic inference
techniques for belief networks (pp. 247-256). Springer Berlin Heidelberg.
[Friedman+ 00] Friedman, N., Geiger, D., & Lotner, N. (2000, June). Likelihood
computations using value abstraction. In Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (pp. 192-200). Morgan Kaufmann Publishers Inc..
[Taniguchi+ 15] Taniguchi, T., Nakashima, R., & Nagasaka, S. (2015). Nonparametic
Bayesian Double Articulation Analyzer for Direct Language Acquisition from
Continuous Speech Signals. arXiv preprint arXiv:1506.06646.
◆書籍
D, Koller & N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.
K. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
渡辺 有祐. 機械学習プロフェッショナルシリーズ グラフィカルモデル, 講談社, 2016.
宮川 雅巳. 統計的因果推論 –回帰分析の新しい枠組み-, 朝倉書店, 2004.
J. Pearl, 黒木 学訳, 統計的因果推論 モデル・推論・推測, 共立出版, 2009.
Probabilistic Graphical Models 輪読会 #1 119