Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Power of a Power Finding powers of numbers with exponents (x m ) n  = x mn
Simplify <ul><li>(2 3 ) 2 </li></ul><ul><li>This means 2 3 *2 3  </li></ul><ul><li>2 3 *2 3  = (2*2*2)*(2*2*2)=2 6 </li></ul>
Simplify <ul><li>(4 2 ) 3 </li></ul><ul><li>This means 4 2 *4 2  *4 2 </li></ul><ul><li>4 2 *4 2 *4 2  = (4*4)*(4*4)*(4*4)...
How does this work? <ul><li>Look again </li></ul><ul><ul><li>(4 2 ) 3  = 4 6 </li></ul></ul><ul><ul><li>(2 3 ) 2  =2 6 </l...
Let’s look at some more <ul><li>(3 3)4  = (3*3*3)*(3*3*3)*(3*3*3)*(3*3*3) </li></ul><ul><li>(3 3)4  =3 ?? </li></ul><ul><l...
Let’s try some using the Power of Powers Property <ul><li>The Power of Powers Property states that when you have a number ...
Try some <ul><li>(2 3)4  = ? </li></ul><ul><li>(10 3)2  = ? </li></ul><ul><li>(p 2)5  = ? </li></ul><ul><li>(x m)3  = ? </...
Power of Powers <ul><li>(2 3)4  = 2 12 </li></ul><ul><li>(10 3)2  = 10 6 </li></ul><ul><li>(p 2)5  = p 10 </li></ul><ul><l...
Lesson 8.2 Part Two
Raise a monomial to a power <ul><li>(xy) 2   = xy*xy = x*x*y*y = x 2 y 2 </li></ul><ul><li>(xy 2 ) 2= </li></ul><ul><li>If...
Try some <ul><li>(xy )2  = ? </li></ul><ul><li>(xy 2)2  = ? </li></ul><ul><li>(πr 2)4  = ? </li></ul><ul><li>Go to the nex...
Solutions <ul><li>(x 1 y )2  = x 2 y 2 </li></ul><ul><li>(x 1 y 2)2  = x 2 y 4 </li></ul><ul><li>(π 1 r 2)4  = π 4 r 8 </l...
Let’s take another look <ul><li>(x 1 y )2  = x 2 y 2 </li></ul><ul><li>(x 1 y 2)2  = x 2 y 4 </li></ul><ul><li>(π 1 r 2)4 ...
Try some more.  Use 1 to your advantage  when you can. <ul><li>(x 2 y) 3 = (x 2 y1) 3 = x 2*3 *y 1 * 3 = x 6 y 3 </li></ul...
Solutions <ul><li>(x 2 y 2 z 2 ) 3 =x 2*3 y 2*3 z 2*3 =x 6 y 6 z 6 </li></ul><ul><li>(abcd) n =a n b n c n d n </li></ul><...
Powers of -1 <ul><li>Write out (-2) 3 </li></ul><ul><li>(-2)*(-2)*(-2) </li></ul><ul><li>When the exponent is an odd numbe...
Suggestion <ul><li>Once again, the suggestion is to write out the multiplication statements to help you solve tricky expon...
Simplify <ul><li>(-t) 5 =? </li></ul><ul><li>(-t) 4 =? </li></ul><ul><li>(-5x) 3 =? </li></ul>
solutions <ul><li>(-t) 5 = (-t) *  (-t) *  (-t) *  (-t) *  (-t) </li></ul><ul><li>=-t 5 </li></ul><ul><li>(-t) 4 =t 4 </li...
Upcoming SlideShare
Loading in …5
×

8 2power Of Power

700 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

8 2power Of Power

  1. 1. Power of a Power Finding powers of numbers with exponents (x m ) n = x mn
  2. 2. Simplify <ul><li>(2 3 ) 2 </li></ul><ul><li>This means 2 3 *2 3 </li></ul><ul><li>2 3 *2 3 = (2*2*2)*(2*2*2)=2 6 </li></ul>
  3. 3. Simplify <ul><li>(4 2 ) 3 </li></ul><ul><li>This means 4 2 *4 2 *4 2 </li></ul><ul><li>4 2 *4 2 *4 2 = (4*4)*(4*4)*(4*4)=4 6 </li></ul>
  4. 4. How does this work? <ul><li>Look again </li></ul><ul><ul><li>(4 2 ) 3 = 4 6 </li></ul></ul><ul><ul><li>(2 3 ) 2 =2 6 </li></ul></ul><ul><li>How do the exponents 2 and 3 relate to the exponent 6? </li></ul>
  5. 5. Let’s look at some more <ul><li>(3 3)4 = (3*3*3)*(3*3*3)*(3*3*3)*(3*3*3) </li></ul><ul><li>(3 3)4 =3 ?? </li></ul><ul><li>3x4 = 12 </li></ul><ul><li>As you can see (3 3)4 shows 3 multiplied by itself 12 times. </li></ul><ul><li>(3 3)4 = 3 3*4 =3 12 </li></ul>
  6. 6. Let’s try some using the Power of Powers Property <ul><li>The Power of Powers Property states that when you have a number to a certain power raised to another power, you multiply the exponents. </li></ul><ul><li>Examples </li></ul><ul><ul><li>(3 3)4 = 3 12 </li></ul></ul><ul><ul><li>(8 2)5 = 8 10 </li></ul></ul><ul><ul><li>(9 1)4 = 9 4 </li></ul></ul>
  7. 7. Try some <ul><li>(2 3)4 = ? </li></ul><ul><li>(10 3)2 = ? </li></ul><ul><li>(p 2)5 = ? </li></ul><ul><li>(x m)3 = ? </li></ul><ul><li>Go to the next slide when you have the solutions to check your work. </li></ul>
  8. 8. Power of Powers <ul><li>(2 3)4 = 2 12 </li></ul><ul><li>(10 3)2 = 10 6 </li></ul><ul><li>(p 2)5 = p 10 </li></ul><ul><li>(x m)3 = x 3m </li></ul>
  9. 9. Lesson 8.2 Part Two
  10. 10. Raise a monomial to a power <ul><li>(xy) 2 = xy*xy = x*x*y*y = x 2 y 2 </li></ul><ul><li>(xy 2 ) 2= </li></ul><ul><li>If you get stuck with powers of powers, try writing out the multiplication of numbers and variables. </li></ul>(x*y*y)* (x*y*y) = x*y*y*x*y*y = x*x*y*y*y*y = x 2 y 4
  11. 11. Try some <ul><li>(xy )2 = ? </li></ul><ul><li>(xy 2)2 = ? </li></ul><ul><li>(πr 2)4 = ? </li></ul><ul><li>Go to the next slide when you have the solutions to check your work. </li></ul>
  12. 12. Solutions <ul><li>(x 1 y )2 = x 2 y 2 </li></ul><ul><li>(x 1 y 2)2 = x 2 y 4 </li></ul><ul><li>(π 1 r 2)4 = π 4 r 8 </li></ul><ul><li>Can you see the power of powers property at work? </li></ul><ul><li>If not, try changing the variables that have no exponent to an exponent of one. </li></ul><ul><li>{Once again, 1 comes in handy!} </li></ul>
  13. 13. Let’s take another look <ul><li>(x 1 y )2 = x 2 y 2 </li></ul><ul><li>(x 1 y 2)2 = x 2 y 4 </li></ul><ul><li>(π 1 r 2)4 = π 4 r 8 </li></ul>
  14. 14. Try some more. Use 1 to your advantage when you can. <ul><li>(x 2 y) 3 = (x 2 y1) 3 = x 2*3 *y 1 * 3 = x 6 y 3 </li></ul><ul><li>(x 2 y 2 z 2 ) 3 = </li></ul><ul><li>(abcd) n = </li></ul><ul><li>(x 2 y 3 ) 5 = </li></ul>
  15. 15. Solutions <ul><li>(x 2 y 2 z 2 ) 3 =x 2*3 y 2*3 z 2*3 =x 6 y 6 z 6 </li></ul><ul><li>(abcd) n =a n b n c n d n </li></ul><ul><li>(x 2 y 3 ) 5 =x 2*5 y 3*5 = x 10 y 15 </li></ul>
  16. 16. Powers of -1 <ul><li>Write out (-2) 3 </li></ul><ul><li>(-2)*(-2)*(-2) </li></ul><ul><li>When the exponent is an odd number, the answer can be negative. </li></ul><ul><li>[(-2)*(-2)]*(-2)= </li></ul><ul><li>[+4] * (-2) = -8 </li></ul>
  17. 17. Suggestion <ul><li>Once again, the suggestion is to write out the multiplication statements to help you solve tricky exponential products. </li></ul>
  18. 18. Simplify <ul><li>(-t) 5 =? </li></ul><ul><li>(-t) 4 =? </li></ul><ul><li>(-5x) 3 =? </li></ul>
  19. 19. solutions <ul><li>(-t) 5 = (-t) * (-t) * (-t) * (-t) * (-t) </li></ul><ul><li>=-t 5 </li></ul><ul><li>(-t) 4 =t 4 </li></ul><ul><li>(-5x) 3 =(-5x) (-5x) (-5x) = </li></ul><ul><li>= -5*-5*-5*x*x*x = -125x 3 </li></ul>

×