SlideShare a Scribd company logo

Sybase Unwired Platform 2.1 MBO best practices

Sybase, an SAP Company
Sybase, an SAP CompanySybase, an SAP Company

Sybase Unwired Platform 2.1 MBO best practices

Sybase, an SAP Company
Sybase, an SAP CompanySybase, an SAP Company

Sybase Unwired Platform 2.1 MBO best practices

1 of 37

Recommended

Data extraction and retraction in bpc bi
Data extraction and retraction in bpc biData extraction and retraction in bpc bi
Data extraction and retraction in bpc bivikram2355
 
Sap BPC nw 10.0 master data load from BPC to BW
Sap BPC nw 10.0 master data load from BPC to BWSap BPC nw 10.0 master data load from BPC to BW
Sap BPC nw 10.0 master data load from BPC to BWCloneskills
 
Clone skills,inc. sap bpc on hana data modeling v9 11282013
Clone skills,inc.   sap bpc on hana data modeling v9 11282013Clone skills,inc.   sap bpc on hana data modeling v9 11282013
Clone skills,inc. sap bpc on hana data modeling v9 11282013Jothi Periasamy
 
Db2 blu acceleration and more
Db2 blu acceleration and moreDb2 blu acceleration and more
Db2 blu acceleration and moreIBM Sverige
 
Sa pexperts prospect_webinar_epm_add_in_v1
Sa pexperts prospect_webinar_epm_add_in_v1Sa pexperts prospect_webinar_epm_add_in_v1
Sa pexperts prospect_webinar_epm_add_in_v1ashok_krs
 
Bite: Workflow Composition for the Web. Presented at the ICSOC Conference 2007
Bite: Workflow Composition for the Web. Presented at the ICSOC Conference 2007Bite: Workflow Composition for the Web. Presented at the ICSOC Conference 2007
Bite: Workflow Composition for the Web. Presented at the ICSOC Conference 2007raniakhalaf
 
A Flow Based Approach for End to End Mashups
A Flow Based Approach for End to End MashupsA Flow Based Approach for End to End Mashups
A Flow Based Approach for End to End Mashupsraniakhalaf
 
Designing a Language and System for REST-oriented service composition,as a se...
Designing a Language and System for REST-oriented service composition,as a se...Designing a Language and System for REST-oriented service composition,as a se...
Designing a Language and System for REST-oriented service composition,as a se...raniakhalaf
 

More Related Content

What's hot

Sapbpc nw 10.0 consolidations ic matching & ic booking v5
Sapbpc nw 10.0 consolidations ic matching & ic booking v5Sapbpc nw 10.0 consolidations ic matching & ic booking v5
Sapbpc nw 10.0 consolidations ic matching & ic booking v5Jothi Periasamy
 
Advanced level planning and budgeting in Hyperion - Inge Prangel
Advanced level planning and budgeting in Hyperion - Inge PrangelAdvanced level planning and budgeting in Hyperion - Inge Prangel
Advanced level planning and budgeting in Hyperion - Inge PrangelORACLE USER GROUP ESTONIA
 
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012tecrecruiter
 
BPC Session1
BPC Session1BPC Session1
BPC Session1bayu5012
 
Planning 11.1.2 roma maggio 2010
Planning 11.1.2 roma maggio 2010Planning 11.1.2 roma maggio 2010
Planning 11.1.2 roma maggio 2010guesta7ae170
 
DB2 10 Webcast #2 - Justifying The Upgrade
DB2 10 Webcast #2  - Justifying The UpgradeDB2 10 Webcast #2  - Justifying The Upgrade
DB2 10 Webcast #2 - Justifying The UpgradeLaura Hood
 
Preventing Database Perfomance Issues | DB Optimizer
Preventing Database Perfomance Issues | DB OptimizerPreventing Database Perfomance Issues | DB Optimizer
Preventing Database Perfomance Issues | DB OptimizerMichael Findling
 
DB2 Performance Tuning Z/OS - email me please for more details
DB2 Performance Tuning Z/OS - email me please for more detailsDB2 Performance Tuning Z/OS - email me please for more details
DB2 Performance Tuning Z/OS - email me please for more detailsManikandan Suresh
 
Sapbpc nw 10.0 master data load from bw to bpc
Sapbpc nw 10.0 master data load from bw to bpcSapbpc nw 10.0 master data load from bw to bpc
Sapbpc nw 10.0 master data load from bw to bpcSatya
 
Presentation2
Presentation2Presentation2
Presentation2knowrob
 
Step by step procedure for loading of data from the flat file to the master d...
Step by step procedure for loading of data from the flat file to the master d...Step by step procedure for loading of data from the flat file to the master d...
Step by step procedure for loading of data from the flat file to the master d...Prashant Tyagi
 
Qmf for z os nordic db2 days andy
Qmf for z os nordic db2 days andyQmf for z os nordic db2 days andy
Qmf for z os nordic db2 days andyPeter Schouboe
 
Drive User Adoption And Productivity Using Crm Within Microsoft Outlook
Drive User Adoption And Productivity Using Crm Within Microsoft OutlookDrive User Adoption And Productivity Using Crm Within Microsoft Outlook
Drive User Adoption And Productivity Using Crm Within Microsoft OutlookJerome Leonard
 

What's hot (16)

Sapbpc nw 10.0 consolidations ic matching & ic booking v5
Sapbpc nw 10.0 consolidations ic matching & ic booking v5Sapbpc nw 10.0 consolidations ic matching & ic booking v5
Sapbpc nw 10.0 consolidations ic matching & ic booking v5
 
Advanced level planning and budgeting in Hyperion - Inge Prangel
Advanced level planning and budgeting in Hyperion - Inge PrangelAdvanced level planning and budgeting in Hyperion - Inge Prangel
Advanced level planning and budgeting in Hyperion - Inge Prangel
 
Analysis edition for olap
Analysis edition for olapAnalysis edition for olap
Analysis edition for olap
 
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012
Omaha Rug2012 People Soft Fms 9 1 Overview Apr2012
 
BPC Session1
BPC Session1BPC Session1
BPC Session1
 
Planning 11.1.2 roma maggio 2010
Planning 11.1.2 roma maggio 2010Planning 11.1.2 roma maggio 2010
Planning 11.1.2 roma maggio 2010
 
DB2 10 Webcast #2 - Justifying The Upgrade
DB2 10 Webcast #2  - Justifying The UpgradeDB2 10 Webcast #2  - Justifying The Upgrade
DB2 10 Webcast #2 - Justifying The Upgrade
 
Preventing Database Perfomance Issues | DB Optimizer
Preventing Database Perfomance Issues | DB OptimizerPreventing Database Perfomance Issues | DB Optimizer
Preventing Database Perfomance Issues | DB Optimizer
 
DB2 Performance Tuning Z/OS - email me please for more details
DB2 Performance Tuning Z/OS - email me please for more detailsDB2 Performance Tuning Z/OS - email me please for more details
DB2 Performance Tuning Z/OS - email me please for more details
 
Comp ben121enhancementswebinar
Comp ben121enhancementswebinarComp ben121enhancementswebinar
Comp ben121enhancementswebinar
 
Sapbpc nw 10.0 master data load from bw to bpc
Sapbpc nw 10.0 master data load from bw to bpcSapbpc nw 10.0 master data load from bw to bpc
Sapbpc nw 10.0 master data load from bw to bpc
 
Presentation2
Presentation2Presentation2
Presentation2
 
Step by step procedure for loading of data from the flat file to the master d...
Step by step procedure for loading of data from the flat file to the master d...Step by step procedure for loading of data from the flat file to the master d...
Step by step procedure for loading of data from the flat file to the master d...
 
Qmf for z os nordic db2 days andy
Qmf for z os nordic db2 days andyQmf for z os nordic db2 days andy
Qmf for z os nordic db2 days andy
 
Drive User Adoption And Productivity Using Crm Within Microsoft Outlook
Drive User Adoption And Productivity Using Crm Within Microsoft OutlookDrive User Adoption And Productivity Using Crm Within Microsoft Outlook
Drive User Adoption And Productivity Using Crm Within Microsoft Outlook
 
IBM Worspace: Towards a culture of conversations
IBM Worspace: Towards a culture of conversationsIBM Worspace: Towards a culture of conversations
IBM Worspace: Towards a culture of conversations
 

Viewers also liked

Sybase Complex Event Processing
Sybase Complex Event ProcessingSybase Complex Event Processing
Sybase Complex Event ProcessingSybase Türkiye
 
SAP Sybase Event Streaming Processing
SAP Sybase Event Streaming ProcessingSAP Sybase Event Streaming Processing
SAP Sybase Event Streaming ProcessingSybase Türkiye
 
Ensayo Software SAP
Ensayo Software SAPEnsayo Software SAP
Ensayo Software SAPRonaldoR3
 
Carlos nuñez bibliography
Carlos nuñez bibliographyCarlos nuñez bibliography
Carlos nuñez bibliographyNujiii
 
Semnarea digitala a unui e-mail
Semnarea digitala a unui e-mailSemnarea digitala a unui e-mail
Semnarea digitala a unui e-mailcraciunmalina
 
images for cover and dps
images for cover and dpsimages for cover and dps
images for cover and dpssarahlambe
 
Advanced SEO - Digital Content Creators
Advanced SEO - Digital Content CreatorsAdvanced SEO - Digital Content Creators
Advanced SEO - Digital Content CreatorsAndrea Berberich
 
Bos pengalihan ke transfer (2)
Bos   pengalihan ke transfer (2)Bos   pengalihan ke transfer (2)
Bos pengalihan ke transfer (2)Pramudjo211052
 
Role of the Police
Role of the PoliceRole of the Police
Role of the Policesarahmbeck
 
MBUS.525.Chavez.Spring.2012
MBUS.525.Chavez.Spring.2012MBUS.525.Chavez.Spring.2012
MBUS.525.Chavez.Spring.2012staffordlibrary
 
Reading and studying
Reading and studyingReading and studying
Reading and studyingdrmccreedy
 
Introduction to websites
Introduction to websitesIntroduction to websites
Introduction to websitesUCTI
 
Marcommagazine Maart 2011
Marcommagazine Maart 2011Marcommagazine Maart 2011
Marcommagazine Maart 2011gijs28
 

Viewers also liked (20)

SYBASE
SYBASE SYBASE
SYBASE
 
SGBD Sybase
SGBD SybaseSGBD Sybase
SGBD Sybase
 
Sybase Complex Event Processing
Sybase Complex Event ProcessingSybase Complex Event Processing
Sybase Complex Event Processing
 
SAP Sybase Event Streaming Processing
SAP Sybase Event Streaming ProcessingSAP Sybase Event Streaming Processing
SAP Sybase Event Streaming Processing
 
Ensayo Software SAP
Ensayo Software SAPEnsayo Software SAP
Ensayo Software SAP
 
SAP
SAPSAP
SAP
 
curso SAP
curso SAPcurso SAP
curso SAP
 
Modelos de Banco de dados e SGBDS
Modelos de Banco de dados e SGBDSModelos de Banco de dados e SGBDS
Modelos de Banco de dados e SGBDS
 
Sybase: Power Designer
Sybase: Power DesignerSybase: Power Designer
Sybase: Power Designer
 
Carlos nuñez bibliography
Carlos nuñez bibliographyCarlos nuñez bibliography
Carlos nuñez bibliography
 
Semnarea digitala a unui e-mail
Semnarea digitala a unui e-mailSemnarea digitala a unui e-mail
Semnarea digitala a unui e-mail
 
images for cover and dps
images for cover and dpsimages for cover and dps
images for cover and dps
 
Tp fernandagonzalez lamejor
Tp fernandagonzalez lamejorTp fernandagonzalez lamejor
Tp fernandagonzalez lamejor
 
Advanced SEO - Digital Content Creators
Advanced SEO - Digital Content CreatorsAdvanced SEO - Digital Content Creators
Advanced SEO - Digital Content Creators
 
Bos pengalihan ke transfer (2)
Bos   pengalihan ke transfer (2)Bos   pengalihan ke transfer (2)
Bos pengalihan ke transfer (2)
 
Role of the Police
Role of the PoliceRole of the Police
Role of the Police
 
MBUS.525.Chavez.Spring.2012
MBUS.525.Chavez.Spring.2012MBUS.525.Chavez.Spring.2012
MBUS.525.Chavez.Spring.2012
 
Reading and studying
Reading and studyingReading and studying
Reading and studying
 
Introduction to websites
Introduction to websitesIntroduction to websites
Introduction to websites
 
Marcommagazine Maart 2011
Marcommagazine Maart 2011Marcommagazine Maart 2011
Marcommagazine Maart 2011
 

Similar to Sybase Unwired Platform 2.1 MBO best practices

The Three Stages of Cloud Adoption - RightScale Compute 2013
The Three Stages of Cloud Adoption - RightScale Compute 2013The Three Stages of Cloud Adoption - RightScale Compute 2013
The Three Stages of Cloud Adoption - RightScale Compute 2013RightScale
 
Sybase Unwired Platform Modelling Best Practices
Sybase Unwired Platform Modelling Best Practices Sybase Unwired Platform Modelling Best Practices
Sybase Unwired Platform Modelling Best Practices Sybase Türkiye
 
TCO - MongoDB vs. Oracle
TCO - MongoDB vs. OracleTCO - MongoDB vs. Oracle
TCO - MongoDB vs. OracleJeremy Taylor
 
MongoDB at eBay
MongoDB at eBayMongoDB at eBay
MongoDB at eBayMongoDB
 
TCO Comparison MongoDB & Oracle
TCO Comparison MongoDB & OracleTCO Comparison MongoDB & Oracle
TCO Comparison MongoDB & OracleEl Taller Web
 
Business Process Insight - SRII 2012
Business Process Insight - SRII 2012Business Process Insight - SRII 2012
Business Process Insight - SRII 2012Szabolcs Rozsnyai
 
Ibm log differentiators for strategic network planning 2011 v6
Ibm log differentiators for strategic network planning 2011 v6Ibm log differentiators for strategic network planning 2011 v6
Ibm log differentiators for strategic network planning 2011 v6Artem Vinogradov
 
GigaOm-sector-roadmap-cloud-analytic-databases-2017
GigaOm-sector-roadmap-cloud-analytic-databases-2017GigaOm-sector-roadmap-cloud-analytic-databases-2017
GigaOm-sector-roadmap-cloud-analytic-databases-2017Jeremy Maranitch
 
Crack Smoking Data Models
Crack Smoking Data ModelsCrack Smoking Data Models
Crack Smoking Data Modelsnewmedio
 
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...BI Brainz
 
Managing Large Amounts of Data with Salesforce
Managing Large Amounts of Data with SalesforceManaging Large Amounts of Data with Salesforce
Managing Large Amounts of Data with SalesforceSense Corp
 
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...Amazon Web Services
 
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]Rhapsody Technologies, Inc.
 
Gobblin for Data Analytics
Gobblin for Data AnalyticsGobblin for Data Analytics
Gobblin for Data AnalyticsIntel IT Center
 
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...IBM Analytics
 
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)Senturus
 
SBI Securities Case Study
SBI Securities Case StudySBI Securities Case Study
SBI Securities Case StudyVMware Tanzu
 
86921864 olap-case-study-vj
86921864 olap-case-study-vj86921864 olap-case-study-vj
86921864 olap-case-study-vjhomeworkping4
 
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...Amazon Web Services
 

Similar to Sybase Unwired Platform 2.1 MBO best practices (20)

The Three Stages of Cloud Adoption - RightScale Compute 2013
The Three Stages of Cloud Adoption - RightScale Compute 2013The Three Stages of Cloud Adoption - RightScale Compute 2013
The Three Stages of Cloud Adoption - RightScale Compute 2013
 
Sybase Unwired Platform Modelling Best Practices
Sybase Unwired Platform Modelling Best Practices Sybase Unwired Platform Modelling Best Practices
Sybase Unwired Platform Modelling Best Practices
 
TCO - MongoDB vs. Oracle
TCO - MongoDB vs. OracleTCO - MongoDB vs. Oracle
TCO - MongoDB vs. Oracle
 
MongoDB at eBay
MongoDB at eBayMongoDB at eBay
MongoDB at eBay
 
TCO Comparison MongoDB & Oracle
TCO Comparison MongoDB & OracleTCO Comparison MongoDB & Oracle
TCO Comparison MongoDB & Oracle
 
Business Process Insight - SRII 2012
Business Process Insight - SRII 2012Business Process Insight - SRII 2012
Business Process Insight - SRII 2012
 
Ibm log differentiators for strategic network planning 2011 v6
Ibm log differentiators for strategic network planning 2011 v6Ibm log differentiators for strategic network planning 2011 v6
Ibm log differentiators for strategic network planning 2011 v6
 
ADBMS 19MCA8125.pdf
ADBMS 19MCA8125.pdfADBMS 19MCA8125.pdf
ADBMS 19MCA8125.pdf
 
GigaOm-sector-roadmap-cloud-analytic-databases-2017
GigaOm-sector-roadmap-cloud-analytic-databases-2017GigaOm-sector-roadmap-cloud-analytic-databases-2017
GigaOm-sector-roadmap-cloud-analytic-databases-2017
 
Crack Smoking Data Models
Crack Smoking Data ModelsCrack Smoking Data Models
Crack Smoking Data Models
 
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
An In-Depth Look at Pinpointing and Addressing Sources of Performance Problem...
 
Managing Large Amounts of Data with Salesforce
Managing Large Amounts of Data with SalesforceManaging Large Amounts of Data with Salesforce
Managing Large Amounts of Data with Salesforce
 
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...
The Total Cost of Ownership (TCO) of Web Applications in the AWS Cloud - Jine...
 
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]
CDM SIG: Fusion MDM for Customer Highlights [2010 OAUG Collaborate]
 
Gobblin for Data Analytics
Gobblin for Data AnalyticsGobblin for Data Analytics
Gobblin for Data Analytics
 
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...
TDWI San Diego 2014: Wendy Lucas Describes how BLU Acceleration Delivers In-T...
 
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)
Best Practices with OLAP Modeling with Cognos Transformer (Cognos 8)
 
SBI Securities Case Study
SBI Securities Case StudySBI Securities Case Study
SBI Securities Case Study
 
86921864 olap-case-study-vj
86921864 olap-case-study-vj86921864 olap-case-study-vj
86921864 olap-case-study-vj
 
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...
AWS Partner Presentation - PetaByte Scale Computing on Amazon EC2 with BigDat...
 

Recently uploaded

Ave D Case Studies Q124
Ave D Case Studies Q124Ave D Case Studies Q124
Ave D Case Studies Q124ChadDyar1
 
Apple Vision Pro.pdf
Apple Vision Pro.pdfApple Vision Pro.pdf
Apple Vision Pro.pdfkbkelly65
 
Heat sensor physics project file.....pdf
Heat sensor physics project file.....pdfHeat sensor physics project file.....pdf
Heat sensor physics project file.....pdfLUSTGAMING
 
3 Pitfalls Everyone Should Avoid with Cloud Native Observability
3 Pitfalls Everyone Should Avoid with Cloud Native Observability3 Pitfalls Everyone Should Avoid with Cloud Native Observability
3 Pitfalls Everyone Should Avoid with Cloud Native ObservabilityEric D. Schabell
 
Federated Learning
Federated LearningFederated Learning
Federated Learningmiloudiamara
 
Salesforce Developer Toolkit - Salesforce Impact Hackathon
Salesforce Developer Toolkit - Salesforce Impact HackathonSalesforce Developer Toolkit - Salesforce Impact Hackathon
Salesforce Developer Toolkit - Salesforce Impact Hackathonrohitasare71
 
2024 January Patch Tuesday
2024 January Patch Tuesday2024 January Patch Tuesday
2024 January Patch TuesdayIvanti
 
Fundamentals of BI Report Testing - Module 5
Fundamentals of BI Report Testing - Module 5Fundamentals of BI Report Testing - Module 5
Fundamentals of BI Report Testing - Module 5MichaelCalabrese20
 
WannaCry for My Honey(pots) - Four weeks in the trenches
WannaCry for My Honey(pots) - Four weeks in the trenchesWannaCry for My Honey(pots) - Four weeks in the trenches
WannaCry for My Honey(pots) - Four weeks in the trenchesJamz Yaneza
 
Custom Software Development Company in California | Ditstek
Custom Software Development Company in California | DitstekCustom Software Development Company in California | Ditstek
Custom Software Development Company in California | DitstekDitstekInnovations
 
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...HakTrak Cybersecurity Squad
 
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...DianaGray10
 
New Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersNew Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersSafe Software
 
9C Monthly Newsletter - JAN 2024
9C Monthly Newsletter - JAN 20249C Monthly Newsletter - JAN 2024
9C Monthly Newsletter - JAN 2024PublishingTeam
 
Fundamentals of BI Report Testing - Module 8
Fundamentals of BI Report Testing - Module 8Fundamentals of BI Report Testing - Module 8
Fundamentals of BI Report Testing - Module 8MichaelCalabrese20
 
Cryptography Intro - NCL
Cryptography Intro - NCLCryptography Intro - NCL
Cryptography Intro - NCLjrice8
 
The (un)surprising truth about DevOps Culture, by Manuel Pais
The (un)surprising truth about DevOps Culture, by Manuel PaisThe (un)surprising truth about DevOps Culture, by Manuel Pais
The (un)surprising truth about DevOps Culture, by Manuel PaisAgile Connect®
 
2023 Web 3.0 market overview .pdf
2023 Web 3.0 market overview .pdf2023 Web 3.0 market overview .pdf
2023 Web 3.0 market overview .pdfLiveplex
 

Recently uploaded (20)

Ave D Case Studies Q124
Ave D Case Studies Q124Ave D Case Studies Q124
Ave D Case Studies Q124
 
Apple Vision Pro.pdf
Apple Vision Pro.pdfApple Vision Pro.pdf
Apple Vision Pro.pdf
 
Heat sensor physics project file.....pdf
Heat sensor physics project file.....pdfHeat sensor physics project file.....pdf
Heat sensor physics project file.....pdf
 
3 Pitfalls Everyone Should Avoid with Cloud Native Observability
3 Pitfalls Everyone Should Avoid with Cloud Native Observability3 Pitfalls Everyone Should Avoid with Cloud Native Observability
3 Pitfalls Everyone Should Avoid with Cloud Native Observability
 
Federated Learning
Federated LearningFederated Learning
Federated Learning
 
Salesforce Developer Toolkit - Salesforce Impact Hackathon
Salesforce Developer Toolkit - Salesforce Impact HackathonSalesforce Developer Toolkit - Salesforce Impact Hackathon
Salesforce Developer Toolkit - Salesforce Impact Hackathon
 
2024 January Patch Tuesday
2024 January Patch Tuesday2024 January Patch Tuesday
2024 January Patch Tuesday
 
Fundamentals of BI Report Testing - Module 5
Fundamentals of BI Report Testing - Module 5Fundamentals of BI Report Testing - Module 5
Fundamentals of BI Report Testing - Module 5
 
WannaCry for My Honey(pots) - Four weeks in the trenches
WannaCry for My Honey(pots) - Four weeks in the trenchesWannaCry for My Honey(pots) - Four weeks in the trenches
WannaCry for My Honey(pots) - Four weeks in the trenches
 
Custom Software Development Company in California | Ditstek
Custom Software Development Company in California | DitstekCustom Software Development Company in California | Ditstek
Custom Software Development Company in California | Ditstek
 
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...
A Deep Dive into Exploiting SaaS-Based Company Partnership Management Dashboa...
 
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...
Career Talk Series: Session 1 - Transitioning from RPA to AI automation profe...
 
New Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s FoundersNew Year's Fireside Chat with Safe Software’s Founders
New Year's Fireside Chat with Safe Software’s Founders
 
9C Monthly Newsletter - JAN 2024
9C Monthly Newsletter - JAN 20249C Monthly Newsletter - JAN 2024
9C Monthly Newsletter - JAN 2024
 
Fundamentals of BI Report Testing - Module 8
Fundamentals of BI Report Testing - Module 8Fundamentals of BI Report Testing - Module 8
Fundamentals of BI Report Testing - Module 8
 
Cryptography Intro - NCL
Cryptography Intro - NCLCryptography Intro - NCL
Cryptography Intro - NCL
 
Tools for kubernetes network debugging
Tools for kubernetes network debuggingTools for kubernetes network debugging
Tools for kubernetes network debugging
 
The (un)surprising truth about DevOps Culture, by Manuel Pais
The (un)surprising truth about DevOps Culture, by Manuel PaisThe (un)surprising truth about DevOps Culture, by Manuel Pais
The (un)surprising truth about DevOps Culture, by Manuel Pais
 
How to Hire a DevOps Consultant in 2024.pdf
How to Hire a DevOps Consultant in 2024.pdfHow to Hire a DevOps Consultant in 2024.pdf
How to Hire a DevOps Consultant in 2024.pdf
 
2023 Web 3.0 market overview .pdf
2023 Web 3.0 market overview .pdf2023 Web 3.0 market overview .pdf
2023 Web 3.0 market overview .pdf
 

Sybase Unwired Platform 2.1 MBO best practices

  • 1. SUP  2.1  KNOWLEDGE  TRANSFER   DATA  MODELING   MICHAEL HO OCTOBER 20, 2011
  • 2. CONTENTS   •  MBO  DefiniAon   •  Data  Loading   •  Cache  Policies   •  Data  Model  ImplicaAons  on  Client   •  Challenges  in  the  Field   •  SUP  2.1.1  Preview   2  –  Company  ConfidenAal  –  December  12,  2011  
  • 3. MBO  DEFINITION   THE  MBO  DATA  MODEL  IS  THE  CLIENT  DATA  MODEL   3  –  Company  ConfidenAal  –  December  12,  2011  
  • 4. MBO  DATA  MODEL   •  MBO  data  model  is  NOT  a  model  for  backend  business  objects   •  It  is  the  data  model  for  the  mobile  applicaEon  on  the  device   – A  user  replicates  the  data  model  for  the  desktop  applicaAon   on  the  device  where  many  of  the  aTributes  are  never  used,   leading  to  slow  synchronizaAon  and  performance  degradaAon   •  Empirical  data  shows  that  MBO  data  model  impacts  not  only   mobile  applicaEon  development  but  synchronizaEon   performance   •  MBO  definiEon  should  take  into  consideraEon  mobile   database  limitaEons   •  SynchronizaEon  group  defines  what  to  synchronize   •  Cache  group  defines  what  and  when  to  load  from  backend  to   fill  the  tables  in  CDB   4  –  Company  ConfidenAal  –  December  12,  2011  
  • 5. MBO  DATA  MODEL   •  RelaEonship  enables  navigaEon,  whole-­‐part  removal,  cascade   operaEons   – Supports  associaAon  (items    product)  and  composiAon   (sales  order    items)             •  Surrogate  key  scheme  on  the  client  database   – As  primary  key  for  synchronizaAon   – Foreign  key  to  implement  relaAonship   – Cache  associates  surrogate  key  with  backend  primary  key   5  –  Company  ConfidenAal  –  December  12,  2011  
  • 6. MBO  DATA  MODEL   •  Backend  create  operaEon  expected  to  return  primary  key  so   associaEon  between  surrogate  key  and  primary  key  can  be   formed   •  SynchronizaEon  parameters  serve  as  subscripEon  to   download  data   – Can  have  mulAple  sets  of  synchronizaAon  parameters  at  any   given  Ame   – Data  corresponding  to  these  sets  of  synchronizaAon   parameters  are  downloaded  to  the  device   – May  delete  en#re  collecAon  of  synchronizaAon  parameters   sets  to  reclaim  storage  space   6  –  Company  ConfidenAal  –  December  12,  2011  
  • 7. GOOD  MBO  MODELING  PRACTICE   MBO  DEFINITION   •  Every  aUribute  is  used  by  the  mobile  applicaEon   •  MBO  instance  =  database  row  (must  fit  within  a  page)   – Large  row  size  requires  larger  page  size  impacAng   performance  on  device  and  synchronizaAon   – Do  not  define  a  MBO  with  more  than  50  aTributes   – Do  not  use  STRING  data  type.  Instead,  use  STRING(n)  to   define  the  maximum  string  length  (STRING  defaults  to  300)   – PromoAon  of  VARCHAR(n)  to  LONG  VARCHAR  can  occur   during  code  generaAon  if  the  specified  page  size  is  less  than   the  calculated  maximum  row  size   – Use  larger  page  size  during  code  generaAon  and  run  with  a   smaller  one  on  device  if  normal  size  is  much  lower  than   maximum   7  –  Company  ConfidenAal  –  December  12,  2011  
  • 8. GOOD  MBO  MODELING  PRACTICE   INDEX   •  Use  the  minimum  number  of  indexes  to  support  queries  used   by  the  mobile  applicaEon   – Index  slows  down  update  operaAons  on  device  and   synchronizaAon,  especially  on  low  end  devices   – Uncheck  findByPrimaryKey  and  FindAll  queries  generated  for   each  MBO  by  default  if  they  are  not  needed  by  the  mobile   applicaAon             – Determine  if  index  should  be  created  for  user  defined  object   queries   8  –  Company  ConfidenAal  –  December  12,  2011  
  • 9. GOOD  MBO  MODELING  PRACTICE   SYNCHRONIZATION  GROUP   •  Use  synchronizaEon  group  to  add  flexibility  on  what  to   synchronize   – Controls  which  MBOs  to  synchronize  at  a  parAcular  Ame   – Supports  prioriAzaAon  i.e.  get  service  Ackets  without  details   – Limits  the  amount  of  data  during  synchronizaAon  for   customers  facing  impaired  connecAvity  to  avoid  repeatedly   trying  to  complete  a  large  synchronizaAon   – Think  twice  if  the  synchronizaAon  group  has  more  than  5   members   – Run  Ame  flexibility  available  by  combining  synchronizaAon   group  to  reduce  overhead   – RelaAonship  across  synchronizaAon  groups  may  result  in   incomplete  object  graphs  on  the  client   9  –  Company  ConfidenAal  –  December  12,  2011  
  • 10. GOOD  MBO  MODELING  PRACTICE   CACHE  GROUP   •  Use  cache  group  to  control  what  and  when  to  load  data  into   CDB   – Break  up  expensive  data  retrievals  from  backend   – RelaAonship  across  cache  group  may  result  in  incomplete   object  graphs  in  CDB   – Mapping  cache  group  to  synchronizaAon  group  reduces   unnecessary  refresh  not  related  to  the  triggering   synchronizaAon   – Avoid  circular  dependencies  between  cache  groups.   –   Similarly,  avoid  driving  the  load  of  an  MBO  in  one  cache   group  based  on  the  aTributes  of  an  MBO  in  another  cache   group   10  –  Company  ConfidenAal  –  December  12,  2011  
  • 11. GOOD  MBO  MODELING  PRACTICE   PRIMARY  KEY   •  MBO  primary  key  should  match  backend  business  key   •  MBO  with  a  composite  primary  key  and  the  EIS  load   operaEon  parameters  do  not  match  in  scope,  data  may  be   duplicated  in  the  cache   •  If  no  primary  key  is  modeled,  an  implicit  composite  primary   key  that  is  made  up  of  all  columns  is  generated   11  –  Company  ConfidenAal  –  December  12,  2011  
  • 12. GOOD  MBO  MODELING  PRACTICE   SYNCHRONIZATION  PARAMETER   •  SynchronizaEon  parameters  should  be  defined  and  mapped  to   all  result-­‐affecEng  load  parameters   – MBO  uses  WS  operaAon  getAllBooksByAuthor(Author,  userKey)   where  userKey  is  simply  a  mechanism  to  authenAcate  a  user   and  does  not  effect  the  results  of  the  operaAon.  In  this  case   "userKey"  is  not  a  result-­‐affecAng  parameter  and  therefore   should  not  be  mapped  to  a  synchronizaAon  parameter   – MBO  uses  WS  operaAon  getEmployees(Group,  department).  Group   is  mapped  to  a  synchronizaAon  parameter  but  department  is   mapped  to  a  personalizaAon  key.  The  parAAon  idenAfied  by   Group  is  now  constantly  overwriTen   12  –  Company  ConfidenAal  –  December  12,  2011  
  • 13. GOOD  MBO  MODELING  PRACTICE   PARTITION   •  ParEEon  is  parEEons/unique  EIS  result  sets  idenEfied  by  the   result  affec+ng  load  parameters   •  Use  mulEple  parEEons  whenever  possible.  By  default,  we   have  a  single  parEEon   – Increase  parallelism     Load  vs.  load,  load  vs.  update   – Reduce  refresh  latency   – Data/rows  must  not  be  contained  in  mulAple  parAAon   otherwise  data  need  to  be  constantly  updated,  even  if  the   actual  business  data  didn't  change,  as  it  will  bounce  between   parAAons  and  that  severely  impacts  performance  and   download  incorrect  data  to  client   13  –  Company  ConfidenAal  –  December  12,  2011  
  • 14. GOOD  MBO  MODELING  PRACTICE   PARTITION   – ParAAons  can  also  be  used  to  get  data  "real-­‐#me"  when  using   a  cache  interval  of  zero  and  very  small  parAAons  in  their  own   cache  group/sync  group  relaAonship   – ParAAon  granularity     Too  coarse  -­‐  long  refresh  Ame     Too  fine  –  high  overhead  due  to  EIS/SUP  chadness.  It  is  more  efficient   to  have  reasonably  chunky  interface  between  server  networked   components   14  –  Company  ConfidenAal  –  December  12,  2011  
  • 15. GOOD  MBO  MODELING  PRACTICE   SHARED  READ  MBO   •  Use  shared  read  MBO  when  appropriate   – Populate  mulAple  MBOs  with  a  single  data  retrieval   invocaAon  for  efficient  data  loading   – All  MBOs  share  the  same  parAAon  key,  they  will  always  be   loaded/refreshed  together  when  the  cache  expired   – Apply  operaAons  results  always  only  applies  to  the  MBO   instance  the  operaAon  is  executed  on,  you  can  not  fill   mulAple  MBO  from  a  single  operaAon  output/result*   – For  “Apply  Results  to  Cache”  to  work,  the  output  from   operaAon  has  to  look  just  like  the  output  from  the  primary   read*   15  –  Company  ConfidenAal  –  December  12,  2011  
  • 16. GOOD  MBO  MODELING  PRACTICE   SHARED  READ  MBO   – Shared  read  is  very  useful  to  read  objects  into  the  cache   efficiently  and  transacAonally,  you  sAll  have  to  use  client   parameters  for  transacAonal  write  operaAons*     Child  rows  cannot  be  apply  to  cache   – AlternaAvely,  use  MLI  to  chain  discrete  creaAon  operaAons   within  the  hierarchy     Root  create  operaAon  returns  primary  key  for  associaAon  with   surrogate  key  and  child  creaAon   – Apply  results  should  be  used  whenever  possible,  if  one  wants   to  maintain  the  surrogate  -­‐>  business  key  affinity   – Invalidate  cache  is  required  to  be  used  if  the  device  side   content  must  be  confirmed  in  the  most  Amely  fashion     MulAple  parAAons  to  reduce  invalidate-­‐refresh  cost  to  retrieve  result   16  –  Company  ConfidenAal  –  December  12,  2011  
  • 17. DATA  LOADING   FILLING  THE  CDB  WITH  ENTERPRISE  DATA   17  –  Company  ConfidenAal  –  December  12,  2011  
  • 18. DATA  LOADING  DESIGN  PREPARATION   •  Know  Thy  Data   – Reference  vs.  TransacAonal:  Mostly  Read  vs.  Read/Write   – Shared  vs.  Private   – Sources  of  changes:  coherency  implicaAons   – Update  frequency  and  freshness  requirement   – Access  paTern:  peak  and  valley  or  distributed   – Data  volume:  size  does  maTer   •  Know  Thy  Data  Sources   – Efficiency  of  interface     Protocol:  JCO  vs.  Web  Services     API:  Number  of  invocaAons  required   – Push  vs.  Pull   – ReacAon  to  peak  load     18  –  Company  ConfidenAal  –  December  12,  2011  
  • 19. RULE  OF  THUMB  RE:  DATA  LOADING   •  Do  not  use  exisEng  API  just  because  it  is  there     – Evaluate  its  efficiency  for  loading  data  into  CDB   – Develop  custom  mobile  adapAon  if  appropriate   – Load  what  is  needed  not  what  is  provided   •  Use  an  efficient  interface  (protocol)  for  high  data  volume   •  Use  DCN  for  very  large  data  volume   – Avoids  large  data  transfer  and  differenAal  calculaAon   – Does  not  help  with  iniAal  loading   •  Use  mulEple  parEEons  to  split  the  loading  whenever  possible   – Private  data  should  consider  the  use  of  “parAAon  by   requester  and  device  idenAty”  or  equivalent   – Develop  backend  API  to  load  by  parAAon  if  appropriate   19  –  Company  ConfidenAal  –  December  12,  2011  
  • 20. RULE  OF  THUMB  RE:  DATA  LOADING   •  Do  not  mix  DCN  with  scheduled  or  on  demand   •  Do  not  use  very  large  DCN  message  to  improve  efficiency   – Excessive  memory  consumpAon  to  process  large  message   – May  block  download  due  to  many  locked  rows   •  Use  cache  groups  to  group  MBOs  with  similar  usage   characterisEcs  to  tune  load  performance   – Reference  vs.  transacAonal   – Private  vs.  shared   •  Use  shared  read  operaEons  if  possible   – Reduce  backend  interacAons   20  –  Company  ConfidenAal  –  December  12,  2011  
  • 21. REFERENCE  DATA   •  [Mostly  Read,  Large  Data  Volume,  Low  VolaElity]     •  Strategy:  Cache  and  Share     •  On  Demand  with  non  zero  cache  interval   – Alleviate  large  iniAal  data  loading  issue  through  parAAoning  if   users  take  different  subsets  of  the  reference  data     Large  iniAal  load  is  spread  out  over  Ame     Load  data  on  demand  and  in  parallel   – SaAsfy  data  freshness  requirement  through  cache  interval   21  –  Company  ConfidenAal  –  December  12,  2011  
  • 22. REFERENCE  DATA   •  Scheduled   – Match  backend  with  predetermined  reference  data  update   schedule  e.g.  batch  run  @  midnight   – ParAAoning  to  restrict  loading  only  for  subscribed  data   – Not  recommended  for  high  data  freshness  if  backend  data  is   volaAle  as  we  are  limited  by  the  update  interval   22  –  Company  ConfidenAal  –  December  12,  2011  
  • 23. REFERENCE  DATA   •  DCN  (Fill  and  Filter  Model)   – Enable  backend  data  change  propagaAon  to  cache  with   lowest  cost  compared  to  on  demand  or  scheduled   – Enables  SIS  without  extra  work   – Supports  high  data  freshness  through  proper  change   detecAon  interval   –   ∞  cache  interval   – Use  synchronizaAon  parameters  for  filtering  download  data   – High  iniAal  load  cost  for  large  data  volume  can  be  an  issue   23  –  Company  ConfidenAal  –  December  12,  2011  
  • 24. SERVER  INITIATED  SYNCHRONIZATION   REFERENCE  DATA   •  On  Demand   – Change  detecAon  funcAonal  if  someone  refreshed  the  data  +   cache  expiraAon  (NZCI)   •  Scheduled   –   Change  detecAon  funcAonal  whenever  the  change  is  pulled   into  the  system   •  DCN   – Most  opAmal  with  SIS  as  changes  are  pushed  to  the  cache   – Change  detecAon  funcAonal  aper  push   •  NoEficaEon  MBO  paUern  for  On  Demand  with  ZCI   24  –  Company  ConfidenAal  –  December  12,  2011  
  • 25. READ/WRITE  DATA  WITH  CACHE  INTERVAL   •  Data  in  cache  using  Non  Zero  Cache  Interval  ≠  System  of   Record   – It  helps  to  reduce  number  data  retrieval  invocaAons  to   backend   – Apply  results  to  cache  is  not  always  the  same  as  what  is  in  the   backend  even  when  the  operaAon  succeeds   – Race  condiAon  can  produce  a  stale  result  in  the  cache  unAl   next  refresh.  In  case  of  DCN,  it  may  be  unAl  the  next  update   25  –  Company  ConfidenAal  –  December  12,  2011  
  • 26. TRANSACTIONAL  DATA  (PRIVATE)   •  [Read/Write,  Per  User  Data,  Low  Volume,  Moderate  VolaElity]   •  On  Demand  with  zero  cache  interval   – Data  is  always  consistent  with  backend   – Requester/Device  based  or  equivalent  parAAoning  limits   refresh  cost   – SIS  can  be  implemented  through  noAficaAon  MBO  paTern   – Evaluate  if  backend  can  handle  peak  load  if  users  tend  to   synchronize  within  certain  Ame  of  the  day   •  On  Demand  with  non  zero  cache  interval   – No  benefit  unless  user  synchronizes  repeatedly  in  succession   e.g.  submidng  operaAon  and  downloading  of  applied  results       26  –  Company  ConfidenAal  –  December  12,  2011  
  • 27. TRANSACTIONAL  DATA  (PRIVATE)   •  Scheduled   – Enables  SIS  based  on  cache  interval   – Performance  implicaAons   •  DCN   – Enables  SIS  without  extra  work   – Supports  high  data  freshness  through  proper  change   detecAon  interval   – Data  is  not  always  consistent  with  backend.  May  require   another  update  to  fix  the  inconsistency   See  notes   27  –  Company  ConfidenAal  –  December  12,  2011  
  • 28. TRANSACTIONAL  DATA  (SHARED)   •  Sharing  at  two  levels   – MBO  instances  level  (ML)   – ParAAon  level  (PL)   •  On  Demand  with  non  zero  cache  interval   – SIS  based  on  user  synchronizaAon  acAvity  +  expiraAon   – ParAAon  by  Requester  and  Device  IdenAty  (ML)     Duplicated  rows  in  non-­‐overlapping  parAAons     Duplicated  parAAons  if  user  has  mulAple  devices   – ParAAon  by  user  specific  idenAty  (ML)     Make  sure  that  the  user  specific  idenAty  is  combined  with  backend   primary  key  to  form  the  MBO  primary  key  to  avoid  shared  row  bouncing   between  parAAons   28  –  Company  ConfidenAal  –  December  12,  2011  
  • 29. CACHE  POLICY   STAGING  VS.  CACHING   29  –  Company  ConfidenAal  –  December  12,  2011  
  • 30. CACHE  POLICY:  ON  DEMAND   •  Refresh  triggered  by  synchronizaEon   •  Zero  cache  interval   – Allows  latest  data  from  backend  to  be  retrieved   – Unless  data  volume  is  small,  should  be  coupled  with  parAAoning   – User  synchronizaAon  acAviAes  allow  changes  to  be  detected   •  Non  zero  cache  interval   – Reduce  data  loading  invocaAons  against  backend   – Coupled  with  parAAoning  to  reduce  amount  of  data  to  be  loaded   per  invocaAon   – User  synchronizaAon  acAviAes  +  cache  interval  expiraAon  allow   changes  to  be  detected   – Chances  of  inconsistency  with  backend   – Increase  parallelism  when  for  shared  data   30  –  Company  ConfidenAal  –  December  12,  2011  
  • 31. CACHE  POLICY:  ON  DEMAND   •  Refresh  triggered  by  synchronizaEon   •  Zero  cache  interval   – Allows  latest  data  from  backend  to  be  retrieved   – Unless  data  volume  is  small,  should  be  coupled  with   parAAoning   – User  synchronizaAon  acAviAes  allow  changes  to  be  detected     31  –  Company  ConfidenAal  –  December  12,  2011  
  • 32. CACHE  POLICY:  SCHEDULED   •  AutomaEc  refresh  based  on  interval   •  Cache  interval  is  base  case  noEficaEon  granularity   •  ParEEoning  helps  to  spread  out  iniEal  data  loading   •  Match  backend  data  update  frequency  especially  for   reference  data   •  Chances  of  inconsistency  with  backend     32  –  Company  ConfidenAal  –  December  12,  2011  
  • 33. CACHE  POLICY:  DCN   •  Single  parEEon   •  Download  filtering  via  synchronizaEon  parameters   •  IniEal  data  loading  can  take  a  long  Eme.  SynchronizaEon  must   wait  for  loading  to  complete   •  Concurrency  with  synchronizaEon  @  row  level   •  DCN  takes  advantage  of  mulEple  SUP  servers  in  the  cluster  to   parallelize  loading   •  Use  a  noEficaEon  MBO  to  let  device  know  data  is  ready   •  Referred  to  MBOs  have  to  be  pushed  before  referring  MBOs   33  –  Company  ConfidenAal  –  December  12,  2011  
  • 34. DATA  MODEL  IMPLICATIONS  ON  CLIENT   LIMITATIONS  OF  MOBILE  DATABASE   34  –  Company  ConfidenAal  –  December  12,  2011  
  • 35. CLIENT  IMPLICATIONS   •  Database  page  size  governed  by  maximum  row  size  derived   from  MBO  definiEon   – Lots  of  aTributes  or  lengthy  ones  larger  rows    larger   page  size   – On  some  devices  like  the  Blackberry,  more  than  memory  is   consumed  –  object  handles   – Based  on  our  observaAons,  page  sizes  between  1k  –  4k  seems   to  provide  best  overall  performance   – Do  not  forget  to  account  for  non  LaAn  encoding  which  will   result  in  large  row  size   – Large  rows  means  less  rows  per  page  and  more  pages  must   be  fetched  or  cached.  For  MBOs  used  in  list  views,  this  can   impact  the  UI  response   35  –  Company  ConfidenAal  –  December  12,  2011  
  • 36. CLIENT  IMPLICATIONS   •  Large  MBO  instance  leads  to  slow  and  expensive  object   instanEaEon   •  Object  query  returns  object(s)  and  dynamic  query  returns   result  set.  Use  dynamic  query  to  bypass  object  instanEaEon   and  selecEvely  retrieve  a  subset  of  aUributes   •  For  one    many  or  one  ↔  many  relaEonship  where   count(many)  is  large   – NavigaAon  and  cascade  operaAon  can  be  expensive   •  Does  the  data  model  enable  applicaEon  to  use  simple  queries   for  most  use  cases?   – Simple  joins  are  expensive  on  mobile  devices.  This  is  true   even  for  iPhone  and  the  like   •  Indexes  slow  down  synchronizaEon  and  updates   36  –  Company  ConfidenAal  –  December  12,  2011