Concentrated Solar Power Course - Session 2 : Parabolic Trough


Published on

In this session the main elements of the parabolic trough technology will be described: concentrators, receivers, heat transfer fluids, connecting elements, etc.

Then, the main characteristics of today’s parabolic trough solar thermal power plants will be presented: design, operation and costs.

Finally, the audience will get some ideas for future developments.

Published in: Technology
  • Thanks a lot. Helps me a lot.
    Are you sure you want to  Yes  No
    Your message goes here
  • 5* presentation!
    What I often find out is that not many people know they can actually build their own solar power station.
    YES! You can even build it in a few free evenings. What you still need is a good instructional step-by-step guide how to pull this off with the least effort. If you want to know WHY you need one,

    Check it out here:
    Are you sure you want to  Yes  No
    Your message goes here
  • Has anyone been able to download Session 2 presentation? If so, perhaps that person could send it to me and others who haven't been able to download it.

    Doug Hinrichs
    Are you sure you want to  Yes  No
    Your message goes here
  • I tried to download the presentation (CSP Training Lesson 2 Parabolic Trough); it says 'download link has been sent to ...'. But I did not receive the link on my mail ID even after one hour. Lavleen
    Are you sure you want to  Yes  No
    Your message goes here
  • Downloadable now. The recording of the session will provide you with much more details and contents. Find it at
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Concentrated Solar Power Course - Session 2 : Parabolic Trough

  1. 1. CSP TrainingLesson 2: Parabolic Trough<br />Manuel Silva<br />Seville University<br />March 2010<br />
  2. 2. See also CPV<br />CONCENTRATING PHOTOVOLTAICS<br />Advantages, Interviews, Video<br /><br />
  3. 3. Solar Thermal Power Plants. Parabolic Trough Technology<br />Manuel A. Silva Pérez<br />Group of Thermodynamics and Renewable Energy<br />ETSI – University of Seville<br /><br /><br />
  4. 4. Main Concentrating Technologies<br />Parabolic troughs<br />Linear Fresnel Reflectors<br />Central Receiver / Heliostats<br />Parabolic dishes<br /><br />
  5. 5.<br />
  6. 6. Solar Thermal Power Plant. Basic configuration<br />Beam irradiance<br />Concentrator<br />Concentrated irradiance<br />Electricity<br />Receiver<br />Thermal energy<br />Thermal Storage<br />Generator<br />Power conversion system<br />Fossil fuel Biomass<br />Boiler<br /><br />
  7. 7. PT power plant configuration<br /><br />
  8. 8. Collector<br /><br />
  9. 9. Collector<br /><br />
  10. 10. Main elements of the collector<br />Reflector (mirror)<br />Receiver tube<br />Structure<br />Tracking system<br />Connecting elements<br />Control system<br /><br />
  11. 11. Applications<br />Process heat<br />STP plant<br /><br />
  12. 12. The reflector<br />Thin glass mirror (0.8 mm)<br />Thick glass mirror (3 -5 mm)<br /><br />
  13. 13. Alternative reflecting surfaces<br />Aluminum<br />Alanod<br />Reflective films (polymers)<br />Reflectech, 3M<br /><br />
  14. 14. Structure <br /><br />
  15. 15. Receiver tube<br />Selective coated steel tube<br />Glass pin for evacuation of gases<br />Vacuum between glass<br />Glass – metal welding<br />and steel tubes<br />'Getter‘ for vacuum maintenance<br />Expansion bellow<br />Glass envelope<br /><br />
  16. 16. Receiver tubes<br />Schott PTR-70<br />Solel UVAC-2 y UVAC-3<br /><br />
  17. 17. Heat transfer fluid<br />Thermal oils<br />Caloria (SEGS I and II, <300ºC)<br />Therminol VP-1 (<400 ºC)<br />Syltherm (Dow Chemical, >400ºC)<br />Water / Steam<br />>400 ºC<br />DISS Project<br />Molten salts<br />Archimedes - ENEA facility<br />Gasses<br />PSA Research Facility<br />State of the art<br /><br />
  18. 18. Tracking mechanisms<br />Electrical motor - gearbox<br />Hydraulic<br /><br />
  19. 19. Connecting collectors<br />Flex hoses<br />Rotating joints<br /><br />
  20. 20. Solar field configuration (I)<br /> 12 SCE<br /> 1 Drive Pylon<br /> 10 Middle Pylon<br /> 1 End Pylon<br /> 1 Shared Pylon (shared with next SCA)<br />1 SCA 150 m <br />150 m<br />Shared Pylon<br />SCE<br />150 m<br />Middle Pylon<br />Drive Pylon<br />End Pylon<br />Hot Oil<br />Cold Oil<br /><br />
  21. 21. Solar field configuration (2)<br />Loop of6 SCA’s<br />1248 m<br />SEGS Power Block80 MW Rankine Cycle<br />Headers<br />Cross OverPipes<br />1379 m<br /><br />
  22. 22. Solar field configuration (3)<br /><br /><br /><br /><br /><ul><li> Thermal losses
  23. 23. unbalanced P
  24. 24. Higher consumption
  25. 25. Thermal losses
  26. 26. Higher cost
  27. 27. P balanced
  28. 28. Lower consumption</li></ul>A) Direct return<br />B) Reverse return<br /><ul><li> Shorter pipelines
  29. 29. Better access to collectors
  30. 30. unbalanced P</li></ul>C) Central<br /><br />
  31. 31. Solar field orientation (Northern Hemisphere) <br />Z<br />Z<br />Sol<br />O<br />S<br />O<br />N<br />N<br />C<br />Y<br />C<br />Y<br />Sol<br />S<br />X<br />X<br />S<br />S<br />E<br />E<br />Maximumyearlyenergygeneration<br />Incidenceanglenever 0 at noon<br />b) N-S tracking<br />a) E-W tracking<br />Maximumefficiency at noon. <br />More balancedseasonalgeneration<br /><br />
  32. 32. Basic design parameters<br />Aperture, A<br />Absorber tube<br />Parabolic<br />q<br />Angulo<br />de<br />aceptancia<br />, <br />Acceptance angle<br />, <br />q<br />Reflector<br />Rayo<br />solar<br />Sun rays<br />f<br />f<br />Angulo<br />de<br />apertura<br />, <br />Aperture angle<br />External receiver diameter<br />Diámetro<br />, D<br />D<br />Length, L<br />a) Concentration ratio, C<br />b) Acceptance angle, <br /><br />
  33. 33. Energy balance. Optical losses<br />Beam irradiance<br />interception factor, <br />, <br />Glass envelope<br /> (Transmissivity = )<br />Selective-coated steel tube<br /> (Absortivity = )<br /> Parabolic mirror<br />(Reflectivity = )<br />o,peak = ···<br /><br />
  34. 34. Geometrical losses<br />Sun<br />L = concentrator length<br />Side view<br />Sol<br /> = incidence angle<br />F = focal length<br />Absorber tube<br />Shaded <br />area<br />Reflecting surface<br />F<br /><br /><br />Plant view<br />ED<br />L<br />Sun<br />Af = W x ED = W x F x tan()<br />a) Shading losses<br />b) Loss of effective collector length<br /><br />
  35. 35. Loss of effective collector length<br />ED<br />W<br /><br />
  36. 36. Thermal losses<br />Qamb,rad<br />Absorber tube<br />Qabs,cond/conv. <br />Qamb,conv<br />Qabs,rad. <br />Qv,abs. <br />Glass envelope<br />[W/m2abs ºC]<br />UL)col = UL)abs / C<br /><br />
  37. 37. Energy balance (solar to thermal)<br />eff<br />eff<br /><br />
  38. 38. Typical operation curve (clear day, no thermal storage)<br />1200 <br />1000 <br />Solar Efficiencies Measured at SEGS VIon July 1997 by KJC Operating Company<br />800 <br />600 <br />70%<br />Direct Normal Radiation<br />400 <br />60%<br />50%<br />200 <br />Thermal SolarField Efficiency<br />-<br />40%<br />0 <br />Direct Normal Radiatiom [W/m²]<br />Efficiency [%] <br />05:00 <br />07:00 <br />09:00 <br />11:00 <br />13:00 <br />15:00 <br />17:00 <br />19:00 <br />21:00 <br />30%<br />20%<br />Solar to Electric Efficiency (gross)<br />10%<br />0%<br /><br />
  39. 39. Andasol-type plants (thermal storage and auxiliary boiler)<br /><br />
  40. 40. SEGS 30 MW<br /><br />
  41. 41. Costs<br />Difficult to evaluate<br />Confidentiality of contracts<br />Volatility of prices<br />Only 2 – 3 providers of key elements<br />O&M experience restricted to US (SEGS Plants)<br /><br />
  42. 42. Costs (w/o TES)<br />Approx. 3.5 – 4 €/kWe<br /><br />
  43. 43. Costs – Solar field<br /><br />
  44. 44. Electricity cost<br />Depends on different factors<br />Solar Resource<br />TES Capacity<br />Labour cost<br />Financial<br />Etc.<br />Spain 2010: LCOE < 250 €/MWh<br />SW USA: LCOE = 120 €/MWh?<br /><br />
  45. 45. PT Technology today, pros & cons.<br />Pros:<br />Mature technology; <br />Comercially proven, over 500 MW installed capacity; <br />Extensive operational record: 9 plants operating for 20 years in USA<br />Easy to finance (in Spain!)<br />Cons:<br />Few manufacturers of key elements (recievers, mirrors…) -> limited competence<br />Limited maximum temperature -> limited efficiency<br />Costly, hazardous HTF<br />Limited TES options<br /><br />
  46. 46. More…<br /><br />Sargent & Lundy Assessment of CSP<br />Look for movies at youtube, e.g:<br /><br /><br /><br />And more…<br /><br />