Concentrated Solar Power Course - Session 1 : Fundamentals


Published on

Lesson 1 : Fundamentals of concentrating solar thermal power

In this session, the contents will focus on the physical and thermodynamic basis of Concentrated Solar Power:

* High temperature solar-thermal conversion, limits to the concentration of solar radiation and description of the main concentrating technologies.
* Solar thermal power plants: concept, background, general configuration and main typologies of solar thermal power plants.

Published in: Technology, Business

Concentrated Solar Power Course - Session 1 : Fundamentals

  1. 1. By Manuel A. Silva Pérez [email_address] March 3, 2010 Concentrated Solar Thermal Power Technnology Training Session 1
  2. 2. Session 1 <ul><li>Introduction to Leonardo ENERGY </li></ul><ul><li>Fundamentals of Thermal Concentrating Systems </li></ul><ul><li>Solar Thermal Power Plants </li></ul>
  3. 3. Leonardo ENERGY: Education, Training and Advocacy on Sustainable Energy 170 partners from industry and academia contribute to Leonardo ENERGY Leonardo ENERGY’s coordination is done by a team of professionals from the European Copper Institute and its European network of 11 offices 5,000 visitors/day, 69,000 e-mail subscribers, weekly webinars, monthly courses
  4. 4. What can you expect from us?
  5. 5. Today’s webinar partners Global Solar Thermal Energy Council REEGLE Estela Solar Protermosolar Seville University CSP Today
  6. 6. SOLAR THERMAL POWER Manuel A. Silva Pérez [email_address] Fundamentals of solar thermal concentrating systems
  7. 7. Solar Thermal Concentrating Systems <ul><li>Systems that make use of solar energy by first concentrating solar radiation and then converting it to thermal energy </li></ul><ul><li>Uses: </li></ul><ul><ul><li>Electricity (Solar Thermal Power) </li></ul></ul><ul><ul><li>Industrial Process Heat </li></ul></ul><ul><ul><li>Absorption cooling </li></ul></ul><ul><ul><li>Chemical processes </li></ul></ul><ul><ul><li>… </li></ul></ul>
  8. 8. Solar energy <ul><li>Abundant </li></ul><ul><li>High-quality energy </li></ul><ul><li>Variable (on time) </li></ul><ul><li>Unevenly distributed (on space) </li></ul><ul><li>Low density </li></ul>
  9. 9. Solar resource availability. The solar belt Excelent Very good Good Inappropriate
  10. 10. 90 % of the total electricity demand could be supplied from STP plants covering 300x300 km 2 . Effcient transmission via HVDC would allow electricity supply to remote areas with moderate losses. DESERTEC project: STP plants in the Magreb Area to supply electricity for Europe and Africa Solar resource availability. The Desertec project 3000 km EU25
  11. 11. Why high temperature? W T Op T A Q 2 Q 1 T D T C Beam Irradiance Radiative losses (emitted by receiver) Difuse Irradiance M.T. Q 2 Q 1 W T Op T A
  12. 12. The sun as a heat source
  13. 13. Why concentrate solar radiation? W T Op T A Q 2 Q 1 T D T C Beam Irradiance Radiative losses (emitted by receiver) Difuse Irradiance M.T. Q 2 Q 1 W T Op T A
  14. 14. Ideal concentrating system <ul><li>The receiver (or absorber) converts concentrated solar radiation to thermal energy (heat) </li></ul><ul><li>An ideal receiver may be characterized as a blackbody, which has only radiative losses </li></ul>RECEIVER Receiver losses Heat Work / Electricity Heat Rejected CONCENTRADOR CONCENTRATOR Thermal Engine Beam Irradiance Concentration losses Concentrated Solar radiation
  15. 15. Geometrical concentration ratio <ul><li>The geometrical concentration ratio, Cg, is defined as </li></ul><ul><li>Where A abs is the receiver (or absorber) area and A c is the collection area. </li></ul>Absorption area Concentrator Collection area
  16. 16. Optical efficiency of the receiver
  17. 17. Ideal concentrator <ul><li>The maximum theoretical optical efficiency (when T abs ≥T Sky ) is the effective absorptivity of the receiver. </li></ul><ul><li>The higher the concentrated solar flux (C*I), the better the optical efficiency. </li></ul><ul><li>The higher the absorber temperature, the higher the radiative loss and, therefore, optical efficiency is lower. </li></ul><ul><li>The higher the effective emissivity, ε , the lower the optical efficiency. </li></ul>
  18. 18. Global efficiency of the ideal concentrating system
  19. 19. Ideal concentrating system <ul><li>For each value of the geometrical concentration ratio, there is an optimum temperature. </li></ul><ul><li>The higher the geometrical concentration ratio, the higher the optimum temperature and the global efficiency. </li></ul>
  20. 20. Concentration limits <ul><li>The Sun is not a point light source . Seen From the Earth, is a disk of apparent diameter θ S ≈ 32’. </li></ul><ul><li>The maximum concentration ratio is given by </li></ul><ul><li>Where n and n’ are the refractive indices of the media that the light crosses before and after the reflection on the concentrator surface </li></ul>32’ 32’ Focus
  21. 21. Other factors affecting real concentrators. Non ideal concentrator surface Ideal curvature Spherical curvature, with waviness
  22. 22. Other factors affecting real concentrators. Sunshape
  23. 23. Types of concentrating systems <ul><li>Line focus (2D) </li></ul><ul><ul><li>Parabolic troughs; CLFR </li></ul></ul><ul><li>Point focus (3D) </li></ul><ul><ul><li>Central receiver systems, parabolic concentrators (dishes) </li></ul></ul>
  24. 24. Real concentrating systems Theoretical 3D: < 46200 2D: < 215
  25. 25. Manuel A. Silva Pérez [email_address] Solar Thermal Power Plants
  26. 26. Solar thermal power <ul><li>100 % renewable </li></ul><ul><li>Based on well known technologies: </li></ul><ul><ul><li>Materials </li></ul></ul><ul><ul><ul><li>Steel </li></ul></ul></ul><ul><ul><ul><li>Mirrors </li></ul></ul></ul><ul><ul><ul><li>Water </li></ul></ul></ul><ul><ul><ul><li>Thermal oil </li></ul></ul></ul><ul><ul><ul><li>Molten salts </li></ul></ul></ul><ul><ul><ul><li>… </li></ul></ul></ul><ul><ul><li>Engineering </li></ul></ul><ul><ul><ul><li>Electrical </li></ul></ul></ul><ul><ul><ul><li>Mechanical </li></ul></ul></ul><ul><ul><ul><li>Thermal… </li></ul></ul></ul>
  27. 27. Solar thermal power <ul><li>The “fuel” is beam solar radiation </li></ul><ul><ul><li>Predictable within certain limits </li></ul></ul><ul><li>Storage and hybridization provide aditional basis for dispatchability </li></ul><ul><li>Centralized or distributed generation </li></ul>Solar thermal power has a very high potential of contribution to the electricity system during the next decades
  28. 28. Solar Thermal Power Plant. Basic configuration Beam irradiance Concentrator Receiver Thermal Storage Concentrated irradiance Electricity Power conversion system Thermal energy Boiler Fossil fuel Biomass
  29. 29. Main Concentrating Technologies Linear Fresnel Reflectors Central Receiver / Heliostats Parabolic troughs Parabolic dishes
  30. 30. Solar thermal power plants <ul><li>Solar Thermal Concentrating systems for electricity (energy) generation </li></ul>
  31. 31. CSP in the Ancient times…
  32. 32. CSP in the modern times
  33. 33. CETS. Breve historia – Años 80: plantas de demostración
  34. 34. Recent history of CSP
  35. 35. Pontevedra, UNED, julio 2007
  36. 36. Other (unrealized) projects… Solgas (1993-1996). Hybrid solar-gas cogeneration plant Colón Solar (1997-1998). Integration of solar energy in a conventional power plant
  37. 37. Nevada Solar One (Boulder City, NV), 2006.
  38. 38. PS10 and PS20 (Seville, Spain). 2007 and 2009
  39. 39. Kimberlina (Bakersfield, CA), 2008.
  40. 40. Calasparra (Murcia, Spain) 2009.
  41. 41. Andasol 1 (Granada, Spain), 2009 Puertollano (Ciudad real, Spain), 2009
  42. 42. Sierra Sun Tower (California, USA) 2009 Maricopa Solar (Arizona, USA) 2009
  43. 43. <ul><li>… and many more to come during the next years </li></ul>