Vectores
Un  vector fijo  del plano es un segmento cuyos extremos están dados en un cierto orden (se suele decir que es un segmento...
Vectores Componentes de un Vector: A (a1,a2) B (b1,b2) b1 b2 a2 a1 Los componentes del vector AB se obtienen restando las ...
Vectores Suma de Vectores: Paralelogramo . Si deseamos sumar dos vectores, una vez dibujados coincidiendo con el origen, p...
Suma de Vectores: Vectores Polígono.  Se emplea, sobre todo, cuando se desean sumar varios vectores a la vez. En el extrem...
Vectores Suma de Vectores: Analíticamente, se suman las componentes. A = (0, 5) B = (5, 4) A + B = (0,5) + (5,4) = (0 + 5,...
Vectores Resta de Vectores: La resta se realiza en forma análoga a la suma
Vectores Resta de Vectores: Aritméticamente restamos las componentes verticales y horizontales entre sí. A = (7, 2) B = (5...
Conmutativa a + b = b + a Asociativa (a + b) + c = a + (b + c) Elemento neutro o vector 0 a + 0 = 0 + a = a Elemento simét...
Vectores Producto de Vectores: El producto escalar de dos vectores no es otro vector sino un número. S e determina multipl...
Upcoming SlideShare
Loading in …5
×

Vectores

1,911 views

Published on

Published in: Education, Travel, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,911
On SlideShare
0
From Embeds
0
Number of Embeds
10
Actions
Shares
0
Downloads
45
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Vectores

  1. 1. Vectores
  2. 2. Un vector fijo del plano es un segmento cuyos extremos están dados en un cierto orden (se suele decir que es un segmento orientado). Se representa por AB, siendo los extremos A y B Los puntos en los que empieza y termina un vector se llaman origen y extremo , respectivamente. Dada una dirección, el sentido del vector es el indicado por la flecha en la que termina A (origen) B (extremo) Vectores B (origen) A (extremo) BA AB
  3. 3. Vectores Componentes de un Vector: A (a1,a2) B (b1,b2) b1 b2 a2 a1 Los componentes del vector AB se obtienen restando las coordenadas de B menos las coordenadas de A
  4. 4. Vectores Suma de Vectores: Paralelogramo . Si deseamos sumar dos vectores, una vez dibujados coincidiendo con el origen, por el extremo de cada vector trazamos una paralela al otro. Ambas paralelas se cortan en un punto. El vector cuyo punto de aplicación coincide con el de los vectores sumandos y cuyo extremo es el que termina en el punto de corte de las paralelas es el vector suma B A
  5. 5. Suma de Vectores: Vectores Polígono. Se emplea, sobre todo, cuando se desean sumar varios vectores a la vez. En el extremo del primer vector se sitúa el punto de aplicación del segundo, sobre el extremo del segundo vector se coloca el punto de aplicación del tercero y así hasta terminar de dibujar todos los vectores. El vector resultante es el que se obtiene al unir el punto de aplicación del primero con el extremo del último
  6. 6. Vectores Suma de Vectores: Analíticamente, se suman las componentes. A = (0, 5) B = (5, 4) A + B = (0,5) + (5,4) = (0 + 5, 5 + 4) = (5, 9)
  7. 7. Vectores Resta de Vectores: La resta se realiza en forma análoga a la suma
  8. 8. Vectores Resta de Vectores: Aritméticamente restamos las componentes verticales y horizontales entre sí. A = (7, 2) B = (5, 4) A - B = (7, 2) - (5, 4) = (7 - 5, 2 - 4) = (2, - 2)
  9. 9. Conmutativa a + b = b + a Asociativa (a + b) + c = a + (b + c) Elemento neutro o vector 0 a + 0 = 0 + a = a Elemento simétrico u opuesto a' a + a' = a' + a = 0 a' = -a Vectores Propiedades de la suma de Vectores:
  10. 10. Vectores Producto de Vectores: El producto escalar de dos vectores no es otro vector sino un número. S e determina multiplicando las coordenadas de ambos vectores, componente a componente y sumando los resultados. Por ejemplo: (-3,2) x (5,1) = ((-3) x5) +(2x1) = -15+2 = -13 Propiedades de la suma de Vectores: Conmutativa A * b = b * a Asociativa (a + b) * c = a * (b + c)

×