Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Dr. Sudhir DevDept. G.P and Emergency Medicine              BPKIHS
What does Malaria mean?          The word “malaria” comes from the Italian mala aria, meaning “bad air.” When the term w...
Overview                    Malaria is a mosquito-borne parasitic disease caused  by genus Plasmodium, affecting over 10...
Epidemiology                   Around 300-500 million clinical cases of malaria are  reported every year, of which more ...

Epidemiology (cont.)             It mainly occurs throughout tropical regions 515 million clinical cases per year An e...
Who is at Risk?                   Most people who get  malaria are travelers or  people who live in an  area with malari...
Causative Agent                Malaria is caused by species of Plasmodium. The genus Plasmodium contains over 200 speci...
Vector                    Female mosquitos of genus Anopheles are primary  hosts and transmission vectors. There are ap...
Vector (cont.)               Only female mosquitoes feed on blood while the males feed on plant nectar and do not transm...
Life Cycle   
Life Cycle & Pathogenesis             Inside the vector (sexual reproduction): Young female mosquitoes ingest the malar...
Life Cycle & Pathogenesis            Inside humans: Malaria develops via two phases:   Exoerythrocytic: involves infec...
Life Cycle & Pathogenesis                            taking a blood meal. A mosquito infects a person by  First, sporoz...
Relationship between life cycle of parasite and             clinical features of malaria  Cycle/ Feature                  ...

Clinical Features                 P. Falciparum It is the most dangerous of the malarias Onset is insidious, with mala...
Clinical Features                      P. falciparum complications: Cerebral Malaria: the most grave complication, caus...
 Hypoglycemia The aetiology is incompletely understood and is  likely to be multifactorial. Depletion of glucose stores d...
Clinical Features                 P. vivax & P. Ovale In many cases the illness starts with several days of  continued ...
Clinical Features                P. malariae infection This is usually associated with mild symptoms and  bouts of feve...
Typical Features                  The characteristic, text-book picture of malarial illness is not  commonly seen. It in...
Typical Features                 In vivax malaria, this typical pattern of fever recurs  once every 48 hours and this is...
Typical Features                    Temperature observations over four days, showing typical fever patterns inmalaria inf...
Atypical Features                  In an endemic area, malaria often presents with atypical  manifestations Atypical fe...
Atypical Features                     Atypical Fever   Headache, Bodyache and Joint pain   Dizziness, Vertigo   Alter...
Classification: Malaria is divided into severe and uncomplicated by the World Health  Organization (WHO). Severe malaria...
Causes of severe malaria            P. falciparum-infected erythrocytes sequester in blood  vessels, creating blockages....
Approach to Patient with Malaria. In patients with                                               suspected   malaria, ob...
Diagnostic Workup                          endemic areas, malaria is In returning travelers from  suggested by the triad...
Rapid Test for Malaria with Kits( Optimal)                          Detects circulating  malaria antigens in  whole bloo...
How the test works?             The test targets the histidine-rich protein II (HRPII)  antigen specific to P. falciparu...
Other Investigation For Diagnosing Malaria                            • Giemsa thick/thin smears GOLD STANDARD• Density o...
Prevention                   Medications (will be mentioned in treatment) Vector control Mosquito nets and bedclothes...
Vector Control                  Efforts to eradicate malaria by eliminating  mosquitoes have been successful in some are...
Mosquito nets                  Mosquito nets help keep mosquitoes away from people  and greatly reduce the infection and...
Immunity                      Natural immunity occurs, but only in response to  repeated infection with multiple strains...
Vaccines                        First proposed in 1960s, still nothing fully effectiveDifficulties include :   Intracell...
Education                         symptoms of malaria Education in recognizing the  has reduced the number of cases in s...
Treatment                      When properly treated, a patient with malaria can expect  a complete recovery. The treatm...
Treatment                      Severe malaria requires the parenteral administration of  antimalarial drugs. Until recen...
Clinical classification of anti malarial drugs                            Casual prophylaxis (cause of infection): On pr...
Treatment of Uncomplicated Malaria                                            Cholroquine sensitive strains of pl. vivax...
Treatment of Uncomplicated Malaria                                   In areas with chloroquine resistant P. vivax, artem...
Uncomplicated falciparum malaria                                   Artemisinin- based combination therapy [ACT] Artesun...
Who 2010 guidelines cont.....                                      Non immune patients on malaria treatment should have ...
Severe Falciparum malariaSpecific therapy:                           Artesunate iv or im( 2.4mg/kg stat followed by 2.4 ...
Special Precautions Intensicve nursing care                quinine if injected rapidly can cause hypotension so adminis...
Special risk groupsPregnancy                            First trimester:Quinine plus clindamycin to be given for 7 days ...
Special risk groups                       standardLactating women: Should receiveantimalarial treatment (including ACTs)...
ChemoprophylaxisAntimalarial tablets                       doseChloroquine resistance high                                ...
Common Mistakes                               Misdiagnosis                              In an endemic area, there may be a...
Common Mistakes                                    Misreport                 Artifacts may be read as malarial parasites o...
Mis-judgement of severityPanic reaction to P. falciparum malaria is common among patients and notuncommon among doctors, r...
Common Mistakes                               MismanagementOver-treatment   (1.) Use of parenteral antimalarials when not ...
Common MistakesUnder-treatment   (1.) Delay in starting treatment: Delay in initiating treatment in a                  cas...

Thank You!    
Upcoming SlideShare
Loading in …5
×

Malaria

1,782 views

Published on

Published in: Health & Medicine, Technology
  • EL PALUDISMO ES UNA ENFERMEDAD DEBILITANTE PARA LA QUE NO HAY TODAVÍA UNA VACUNA EFICAZ, ES UN DESAFIO.LE AGRADESCO MUCHISIMO, GRACIAS
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Malaria

  1. 1. Dr. Sudhir DevDept. G.P and Emergency Medicine BPKIHS
  2. 2. What does Malaria mean? The word “malaria” comes from the Italian mala aria, meaning “bad air.” When the term was coined, it was commonly believed that malaria was caused by breathing in bad air.
  3. 3. Overview  Malaria is a mosquito-borne parasitic disease caused by genus Plasmodium, affecting over 100 countries of the tropical and subtropical regions of the world. Around 400-900 million people are affected At least 2.7 million deaths annually. It is one of the major public health concerns
  4. 4. Epidemiology  Around 300-500 million clinical cases of malaria are reported every year, of which more than a million die of severe and complicated cases of malaria. Malaria is known to kill one child every 30 sec, 3000 children per day under the age of 5 years. Malaria ranks third among the major infectious diseases in causing deaths after pneumococcal acute respiratory infections and tuberculosis, and accounts for approximately 2.6% of the total disease burden of the world.
  5. 5.
  6. 6. Epidemiology (cont.)  It mainly occurs throughout tropical regions 515 million clinical cases per year An estimated 655,000 people died from malaria in 2010 with two-thirds of these occurring in sub-Saharan Africa especially amongst children and pregnant women the incidence of malaria was greatly reduced between 1950 and 1960 but since 1970 there has been resurgence.
  7. 7. Who is at Risk?  Most people who get malaria are travelers or people who live in an area with malaria transmission. Young children and pregnant women. Poor people that live in rural areas who lack knowledge, money and the access to health care.
  8. 8. Causative Agent  Malaria is caused by species of Plasmodium. The genus Plasmodium contains over 200 species  at least 11 species infect humans. Most important are:  Plasmodium falciparum  Plasmodium malariae  Plasmodium ovale  Plasmodium vivax  Plasmodium knowlesi Plasmodium parasites are highly specific with female Anopheles mosquitoes
  9. 9. Vector  Female mosquitos of genus Anopheles are primary hosts and transmission vectors. There are approximately 460 recognized species Over 100 can transmit human malaria Only 30–40 commonly transmit parasites of the genus Plasmodium Anopheles gambiae is one of the best known which transmits Plasmodium falciparum
  10. 10. Vector (cont.) Only female mosquitoes feed on blood while the males feed on plant nectar and do not transmit the disease.The females of Anopheles genus prefer to feed at nightThey start searching for a meal at dusk and continue throughout the night until they take a meal
  11. 11. Life Cycle 
  12. 12. Life Cycle & Pathogenesis  Inside the vector (sexual reproduction): Young female mosquitoes ingest the malaria parasite by taking a blood meal from an infected human carrier The ingested gametocytes will differentiate into male and female gametes and then unite to form a zygote (ookinete) in the mosquito’s gut The resulting ookinete penetrates the gut lining to form an oocyst in the gut wall The oocyst ruptures to release sporozoites that migrate in the mosquito’s body to the salivary glands and are ready to infect new human hosts
  13. 13. Life Cycle & Pathogenesis Inside humans: Malaria develops via two phases:  Exoerythrocytic: involves infection of liver  Erythrocytic phase: involves infection of RBC (erythrocytes)
  14. 14. Life Cycle & Pathogenesis  taking a blood meal. A mosquito infects a person by  First, sporozoites enter the bloodstream, and migrate to the liver. They infect liver cells (hepatocytes), where they multiply into merozoites, rupture the liver cells, and escape back into the bloodstream. (Exoerythrocytic phase  Then, the merozoites infect red blood cells, where they develop into ring forms, trophozoites and schizonts which in turn produce further merozoites. (Erythrocytic phase  Sexual forms (gametocytes) are also produced, which, if taken up by a mosquito, will infect the insect and continue the life cycle.
  15. 15. Relationship between life cycle of parasite and clinical features of malaria Cycle/ Feature  P. Vivax, P. Ovale P. Malariae P. FalciparumPre- Patent Period - 25 days - 30 days -25 days(minimumIncubation)Asexual Cycle hrs synchronous hrs < 48 hrs synchronous synchronousPeriodicity of Tertian Quartan AperiodicFeverExo Erythrocytic Persistent as Pre- Erythrocytic Pre- Erythrocyticcycle hypnozoites only onlyDelayed onset Common Rare RareRelapses Common upto 2 yrs Recrudescence Recrudescence many yrs later upto 1year
  16. 16.
  17. 17. Clinical Features  P. Falciparum It is the most dangerous of the malarias Onset is insidious, with malaise, headache and vomiting… commonly mistaken for influenza The fever has no particular pattern. Jaundice is common due to hemolysis & hepatic dysfunction Hemoglobinuria (blackwater fever), a darkening of the urine seen with severe RBC hemolysis There is hepatosplenomegaly Anemia develops rapidly
  18. 18. Clinical Features  P. falciparum complications: Cerebral Malaria: the most grave complication, causing either confusion or coma without localizing signs. Cerebral malaria develops when parasitized red blood cells (PRBCs) adhere to the cerebral microvasculature, causing blockage of the bloods pathway This blockage stops blood flow, leading to a shortage of oxygen and nutrients those areas of the brain. Complications of cerebral malaria include:  Convulsions  Hypoglycemia  Acute pulmonary edema  Acure renal failure (Blackwater fever )  Metabolic acidosis  Aspiration pneumonia  Severe anemia  Coagulopathy/Spontaneous bleeding These severe manifestations may occur in travelers without immunity or in young children who live in endemic areas.
  19. 19.  Hypoglycemia The aetiology is incompletely understood and is likely to be multifactorial. Depletion of glucose stores due to starvation, parasite utilisation of glucose, impairment of gluconeogenesis have been implicated . Hyperinsulinaemia, secondary to quinine therapy may cause hypoglycemia. Convulsions: Cerebral hypoxia associated with cerebral malaria, fever, hypoglycaemia, other metabolic disturbances such as lactic acidosis and antimalarial drugs Pulmonary Edema: Such cases may be due to increased permeability of pulmonary capillaries. Sequestration of red cells and obstruction of pulmonary microcirculation and disseminated intravascular coagulation may also play their role. Coagulopathy May be due to thrombocytopnea. This abnormality is seen in less than 5% of malaria.(Specially Falciparum )
  20. 20. Clinical Features  P. vivax & P. Ovale In many cases the illness starts with several days of continued fever before the development of classical bouts of fever on alternate days. Fever starts with a rigor. The patient feels cold and the temperature rises to about 40 C. After an hour hot or flush phase begins. It lasts several hours and gives way to profuse perspiration and a gradual fall in temperature. The cycle is repeated 48 hours later. Anemia develops slowly
  21. 21. Clinical Features P. malariae infection This is usually associated with mild symptoms and bouts of fever every third day. Parasitemia may persist for many years with the occasional recurrence of fever, or without producing any symptoms.
  22. 22. Typical Features  The characteristic, text-book picture of malarial illness is not commonly seen. It includes three stages viz. Cold stage, Hot stage and Sweating stage. The febrile episode starts with shaking chills, usually at mid-day, and this lasts from 15 minutes to 1 hour (the cold stage), followed by high grade fever, even reaching above 1060 F, which lasts 2 to 6 hours (the hot stage). This is followed by profuse sweating and the fever gradually subsides over 2-4 hours. These typical features are seen after the infection gets established for about a week.
  23. 23. Typical Features  In vivax malaria, this typical pattern of fever recurs once every 48 hours and this is called as Benign Tertian malaria. Similar pattern may be seen in ovale malaria too (Ovale tertian malaria). In falciparum infection (Malignant tertian malaria), this pattern may not be seen often and the paroxysms tend to be more frequent (Sub-tertian). In P. malariae infection, the relapses occur once every 72 hours and it is called Quartan malaria.
  24. 24. Typical Features Temperature observations over four days, showing typical fever patterns inmalaria infection by different Plasmodium species.
  25. 25. Atypical Features  In an endemic area, malaria often presents with atypical manifestations Atypical features are more common in the following situations:  Falciparum malaria  Early infection  Patients at extremes of age  Patients who are immune-compromised (extremes of age, malnourished, AIDS, tuberculosis, cancers, on immunosuppressive therapy etc.)  Patients on chemoprophylaxis for malaria  Patients who have had recurrent attacks of malaria  Patients with end stage organ failure  Last but not the least, pregnancy.
  26. 26. Atypical Features  Atypical Fever Headache, Bodyache and Joint pain Dizziness, Vertigo Altered Mental Status Cough, Chest pain Jaundice , Pallor, Puffiness of face Abdominal pain, diarrhoea Hepatospleenomegaly This list is not exhaustive and malaria may present in many other ways. In all the above listed situations, patients may not have associated fever, thus confusing the picture. In some, fever may follow these symptoms. Therefore, one should not wait for the typical symptoms of malaria to get a blood test done; it is always better to do a smear whenever reasonable doubt exists.
  27. 27. Classification: Malaria is divided into severe and uncomplicated by the World Health Organization (WHO). Severe malaria is diagnosed when any of the following criteria are present, otherwise it is considered uncomplicated. Decreased consciousness  Significant weakness such that the person is unable to walk Inability to feed Two or more convulsions Low blood pressure (less than 70 mmHg in adults or 50 mmHg in children) Breathing problems Circulatory shock Kidney failure or hemoglobin in the urine Bleeding problems, or hemoglobin less than 5 g/dl Pulmonary edema Low blood glucose (less than 2.2 mmol/l / 40 mg/dl) Acidosis or lactate levels of greater than 5 mmol/l A parasite level in the blood of greater than 2%
  28. 28. Causes of severe malaria  P. falciparum-infected erythrocytes sequester in blood vessels, creating blockages. Infected erythrocytes also “stick to endothelium, platelets, and other erythrocytes” Rosetting -- cohesion of erythrocytes Leads to immune evasion because of lack of circulation through the spleen. Aids in the progression of the severity of malaria
  29. 29. Approach to Patient with Malaria. In patients with  suspected malaria, obtaining a history of recent or remote travel to an endemic area is critical. Asking explicitly if they traveled to a tropical area at anytime in their life may enhance recall. Maintain a high index of suspicion for malaria in any patient exhibiting any malarial symptoms and having a history of travel to endemic areas. Also determine the patients immune status, age, and pregnancy status; allergies or other medical conditions that he or she may have; and medications that he or she may be using.
  30. 30. Diagnostic Workup endemic areas, malaria is In returning travelers from suggested by the triad of thrombocytopenia, elevated lactate dehydrogenase (LDH) levels, and atypical lymphocytes. These findings should prompt obtaining malarial smears. In general, blood cultures should be drawn in a febrile patient. Patients from tropical areas may have more than 1 infection; maintaining a high suspicion for additional infections should be considered when patients do not respond to antimalarials.
  31. 31. Rapid Test for Malaria with Kits( Optimal)  Detects circulating malaria antigens in whole blood. 15 minute test The only FDA cleared rapid malaria test. P. falciparum Sensitivity: 99.7% Specificity: 94.2%* P. vivax Sensitivity: 93.5% Specificity: 99.8%
  32. 32. How the test works?  The test targets the histidine-rich protein II (HRPII) antigen specific to P. falciparum and a pan-malarial antigen (aldolase), common to all four malaria species capable of infecting humans - P. falciparum, P. vivax, P. ovale, and P. malariae. It is intended to aid in the rapid diagnosis of human malaria infections and to aid in the differential diagnosis of Plasmodium falciparum infections from other less virulent malarial infections. Negative results must be confirmed by thin / thick smear microscopy.
  33. 33. Other Investigation For Diagnosing Malaria • Giemsa thick/thin smears GOLD STANDARD• Density of parasitemia (>3% = inpatient)• Fluorescent microscopy (QBC Quantitative Buffy Coat (QBC) Test• PCR POLYMERASE CHAIN REACTION • (~100% sensitive/specific , but expensive/technical)• Other Basic investigation like CBC, CXR, ECG, Electrolytes, LFT, RFT , CT , USG could be done to rule out other complication.
  34. 34. Prevention  Medications (will be mentioned in treatment) Vector control Mosquito nets and bedclothes Immunity (natural & vaccines) Education
  35. 35. Vector Control  Efforts to eradicate malaria by eliminating mosquitoes have been successful in some areas. Malaria was once common in the United States and southern Europe, but vector control programs, in conjunction with the monitoring and treatment of infected humans, eliminated it from those regions. Malaria was eliminated from most parts of the USA in the early 20th century by use of the pesticide DDT.
  36. 36. Mosquito nets  Mosquito nets help keep mosquitoes away from people and greatly reduce the infection and transmission of malaria. The nets are not a perfect barrier and they are often treated with an insecticide designed to kill the mosquito before it has time to search for a way past the net. Insecticide-treated nets (ITNs) are estimated to be twice as effective as untreated nets and offer greater than 70% protection compared with no net. Since the Anopheles mosquitoes feed at night, the preferred method is to hang a large "bed net" above the center of a bed such that it drapes down and covers the bed completely.
  37. 37. Immunity  Natural immunity occurs, but only in response to repeated infection with multiple strains of malaria. A completely effective vaccine is not yet available for malaria, although several vaccines are under development. SPf66 was tested extensively in endemic areas in the 1990s, but clinical trials showed it to be insufficiently effective. Other vaccine candidates, targeting the blood-stage of the parasites life cycle, have also been insufficient on their own. Several potential vaccines targeting the pre-erythrocytic stage are being developed.
  38. 38. Vaccines First proposed in 1960s, still nothing fully effectiveDifficulties include : Intracellular parasites Polymorphism and clonal variation Parasite induced immunosuppression Antigenic variation Evaluation and trials difficult to interpret High level of parasite mutation
  39. 39. Education  symptoms of malaria Education in recognizing the has reduced the number of cases in some areas of the developing world by as much as 20%. Recognizing the disease in the early stages can also stop the disease from becoming a killer. Education can also inform people to cover over areas of stagnant, still water which are ideal breeding grounds for the parasite and mosquito, thus cutting down the risk of the transmission between people. This is most put in practice in urban areas where there are large centers of population in a confined space and transmission would be most likely in these areas.
  40. 40. Treatment  When properly treated, a patient with malaria can expect a complete recovery. The treatment of malaria depends on the severity of the disease; whether patients can take oral drugs or must be admitted depends on the assessment and the experience of the clinician. Uncomplicated malaria is treated with oral drugs. The most effective strategy for P. falciparum infection recommended by WHO is the use of artemisinins in combination with other antimalarials artemisinin- combination therapy, ACT, to avoid the development of drug resistance against artemisinin-based therapies.
  41. 41. Treatment  Severe malaria requires the parenteral administration of antimalarial drugs. Until recently the most used treatment for severe malaria was quinine but artesunate has been shown to be superior to quinine in both children and adults. Treatment of severe malaria also involves supportive measures. Infection with P. vivax, P. ovale or P. malariae is usually treated on an outpatient basis. Treatment of P. vivax requires both treatment of blood stages (with chloroquine or ACT(artemisinin based Combination) as well as clearance of liver forms with primaquine.
  42. 42. Clinical classification of anti malarial drugs  Casual prophylaxis (cause of infection): On pre erythrocytic phase. Proguanil, Primaquine Suppressive cure: on blood schizontocidal  Rapidly acting: Chloroquine, quinine, artemisinin derivatives, mefloquine  Slow acting: suphadoxine, pyrimethamine, doxycycline Radical cure: On latent tissue forms ie exoerythrocytic stage hypnozoites: Primaquine Prevent transmission to Anopheles mosquito: gameticidal. Primaquine, artemisinins
  43. 43. Treatment of Uncomplicated Malaria  Cholroquine sensitive strains of pl. vivax, malariae, ovale – chloroquine 600mg base(10 mg base/kg) stat followed by 300mg base (5 mg/kg at 12, 24 and 36 hrs). Radical treatment for vivax and ovale infection – Primaquine 15 mg daily for 14 days to eradicate hepatic hypnozoites and prevent relapse. In mild-to-moderate G6PD deficiency, primaquine 0.75 mg base/kg body weight given once a week for 8 weeks. In severe G6PD deficiency, primaquine is contraindicated and should not be used.Glucose-6-phosphate dehydrogenase (G PD)
  44. 44. Treatment of Uncomplicated Malaria In areas with chloroquine resistant P. vivax, artemisinin-basedcombination therapies are recommended for the treatment of the same.At least a 14-day course of primaquine is required for the radicaltreatment of P. vivax.
  45. 45. Uncomplicated falciparum malaria Artemisinin- based combination therapy [ACT] Artesunate100mg BD(4mg/kg/day for 3 days) – sulphadoxine 1500 mg(25mg/kg)+ pyrimethamine 75 mg(1.25mg/kg) single doseQuinine 600mg 3 times a day for 7 days followed by suphadoxine 1.5gcombined with pyrimethamine 75 mg (3 tabs of fansidar) Who 2010 guidelines Artemisinin-based combination therapies should be used in preference to sulfadoxinepyrimethamine(SP)+amodiaquine (AQ) for the treatment of uncomplicated P. falciparum malaria. ACTs should include at least 3 days of treatment with an artemisinin derivative. Dihydroartemisinin+piperaquine (DHA+PPQ) is an option for the first-line treatment of uncomplicated P. falciparum malaria worldwide.
  46. 46. Who 2010 guidelines cont..... Non immune patients on malaria treatment should have daily parasite countperformed until negative thick films indicate clearance of parasitesIf level of parasitemia does not fall below 25% of the admission value in 48 hrsor if parasitemia has not cleared by 7 days, drug resistance is likely and regimenshould be changedIn multidrug resistant P. falciparum malaria Artemether+lumifantrine or Artesunate+mefloquine should be used..
  47. 47. Severe Falciparum malariaSpecific therapy:  Artesunate iv or im( 2.4mg/kg stat followed by 2.4 mg/kg at 12 & 24 hrs and then daily for 7 days) + Tab doxycycline mg od x days Quinine dihydrochloride( 20mg/kg infused over 4 hrs followed by 10 mg/kg over 4 hrs every 8 hrs) (Doxycycline is contraindicated in pregnant women and children under 8 years of age; instead, clindamycin 10 mg/kg bw 12 hourly for 7 days should be used).Patients receiving artemisinin derivatives should get full course of oral ACT.However, ACT containing mefloquine should be avoided in cerebral malaria dueto neuropsychiatric complications.
  48. 48. Special Precautions Intensicve nursing care  quinine if injected rapidly can cause hypotension so administered carefully by rate limiting infusion. All patients with iv quinine should get a continuous infusion of 5-10% dextrose Acute renal failure or severe metabolic acidosis – hemofiltration and hemodialysis If unconscious, blood glucose measured every 4-6 hrs, & if <40 mg/dl, iv dextrose should be startedHematocrit measured every 6 hrs, if <20% then whole blood or packed cells infused slowlySpontaneous bleeding- fresh blood and IV vitamin KConvulsions – IV or rectal benzodiazepines.
  49. 49. Special risk groupsPregnancy  First trimester:Quinine plus clindamycin to be given for 7 days (artesunate plusclindamycin for 7 days is indicated if this treatment fails)An ACT is indicated only if this is the only treatment immediately available,or if treatment with 7-day quinine plus clindamycin fails or uncertainty ofcompliance with a 7-day treatment. Second and third trimesterACTs known to be effective in the region or artesunate plus clindamycin tobe given for 7 days, orQuinine plus clindamycin to be given for 7 days.
  50. 50. Special risk groups  standardLactating women: Should receiveantimalarial treatment (including ACTs) except fordapsone, primaquine and tetracyclines.Infants and young children: ACTs are first-linetreatment in infants and young children with attentionto accurate dosing and ensuring the administered dose isretained
  51. 51. ChemoprophylaxisAntimalarial tablets doseChloroquine resistance high  Adult prophylactic RegimenMefloquine 250mg weekly Started 2-3 weeks before travel and continued until 4 weeks afteror Doxycycline 100mg daily Started 1 week before and continued until 4 weeks after travelOr Malarone 1 tablet daily From 1-2 days before travel until 1 week after returnChloroquine resistance absentChloroquine 300mg base weekly Started 1 week before &and proguanil 100-200mg daily continued until 4 weeks after travel
  52. 52. Common Mistakes Misdiagnosis In an endemic area, there may be a tendency to diagnose all cases of fever as malaria, forgetting to even consider other causes. Whereas presumptive treatment with chloroquine in Over-diagnosis cases of fever is well accepted, sometimes, doctors may go Obsession with malaria and beyond that and indulge in presumptive treatment with newerforgetting the OTHER causes drugs, (reserved for multi drug resistance falciparum malaria), even if the MP test is repeatedly negative. Most often such cases of fever turn out to be non-malarial fevers. Therefore, DO NOT FORGET THE OTHER CAUSES OF FEVER. 1. Malaria may not be considered as a possibility in places where it is not common-history of travel to malarious area should be elicited. 2. It may not be considered in patients on chemoprophylaxis for Under-diagnosis malaria. Chemoprophylaxis does not offer 100% protection and Forgetting malaria malaria should be therefore looked for in these patients. 3. Malaria can always co-exist with other infections in an endemic area. Therefore, it should be considered even in patients with other obvious infections causing fever.
  53. 53. Common Mistakes Misreport Artifacts may be read as malarial parasites on peripheral smear as well as QBC test. Dirty slides, contaminated stains, inexperienced microscopist, recycled QBC tubes may be the causes.False positive Malarial parasites may be missed and the test reported as negative. Inadequate smear, dirty stains, contaminated/deteriorated stains, wrong buffer pH, inexperienced technician, incomplete examination of the slide, storage of blood in anticoagulant before preparing the smear etc. may contribute to this problem.False negative
  54. 54. Mis-judgement of severityPanic reaction to P. falciparum malaria is common among patients and notuncommon among doctors, resulting in over-reaction to the situation andover-treatment. Mild anemia, mild icterus, headache etc. are common infalciparum malaria and need not necessarily imply severe malaria. Suchpatients need not be treated with parenteral or second line antimalarial drugs.Also it should not be forgotten that some of the manifestations could be dueto fever, drugs etc., and not necessarily due to severe malaria.P. falciparum malaria can cause dramatic complications and therefore oneshould be always looking for them. Patients who are at increased risk fordevelopment of complications should be ideally admitted for observation.Any indication of complication should be properly managed. Neglecting thesigns like high fever, prostration, significant pallor and jaundice, dehydrationetc. may prove costly. Hypoglycemia may be easily missed.
  55. 55. Common Mistakes MismanagementOver-treatment (1.) Use of parenteral antimalarials when not needed can cause unnecessary hardship to patient. (2.) Using 2nd line antimalarials when not indicated- this only adds to the cost of therapy and to the adverse effects. It also depletes our stock of reserve antimalarial drugs and exposes them to the risk of development of resistance. (3.) Using 2-3 antimalarial drugs concurrently (4.) Higher dose and longer duration: Antimalarial drugs do not offer better efficacy at higher dose, this only adds to the adverse effects. (5.) Failure to switch to oral therapy: Unnecessary continuation of parenteral therapy may increase the adverse effects and also cost of therapy. (6.) Rapid intravenous infusions of chloroquine and quinine may be fatal. (7.) Over-hydration and fluid overload: Enthusiastic administration of fluid and/or blood may precipitate acute pulmonary oedema. (8.) Unnecessary endotracheal intubation in comatose patients who can be managed with conservative measures. (9.) Use of potentially dangerous ancillary therapies: Corticosteroids, anti-inflammatory agents, dextran, heparin, adrenaline, prostacycline etc. should be avoided
  56. 56. Common MistakesUnder-treatment (1.) Delay in starting treatment: Delay in initiating treatment in a case of severe malaria may prove costly. In such cases, if the suspicion of malaria is high, treatment should be started even without waiting for the report or even if the initial report is negative. Also non-availability of a particular dug should not delay the initiation of therapy. (2.) Withholding antimalarial drug for fear of toxicity etc. (3.) Inadequate dosage: Dose should always be calculated as per the body weight of the patient. Inadequate dose may not be effective. (4.) Miscalculation of the dose due to base-salt confusion. (5.) Failure to identify the need for parenteral therapy in severe malaria and to identify therapeutic priorities in severe malaria (6.) Oral therapy in severe malaria (7.) Stopping antimalarial therapy for minor side effects is unjustified. Always weigh the benefits and risks. (8.) Failure to control convulsions (9.) Failure to recognize and treat severe anemia (10.) Delay in starting mechanical ventilation in patients with ARDS, metabolic acidosis etc. (11.) Delay in starting dialysis in cases of renal failure (12.) Delay in considering obstetrical intervention.
  57. 57.
  58. 58. Thank You! 

×