Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

"Maskiner som leser" (Nordic Research 2011)

576 views

Published on

Presentation (in Norwegian) on semantic technology for a non-technical audience of journalists and journalistic researchers, made for the bi-annual Nordic research conference in Oslo, Oct 2011 (http://nordresearch.wordpress.com/).

Published in: Technology
  • Be the first to comment

  • Be the first to like this

"Maskiner som leser" (Nordic Research 2011)

  1. 1. <foaf:Person rdf:ID="me"><foaf:name>Stian Danenbarger</foaf:name><foaf:givenname>Stian</foaf:givenname><foaf:family_name>Danenbarger</foaf:family_name><foaf:mbox rdf:resource="mailto:stian@bouvet.no"/><foaf:homepage rdf:resource="http://twitter.com/stidan"/><foaf:workplaceHomepage rdf:resource="http://www.bouvet.no"/></foaf:Person>"MASKINER SOM LESER"
  2. 2. "semantisk"
  3. 3. RE - SEARCH ?
  4. 4. maskinell informasjonsekstrahering
  5. 5. Securities Ship Indiasecurities 94.96324 ship 109.41212 india 91.74842firm 88.74591 coast 93.70902 singh 50.34063drexel 78.33697 guard 82.11109 militants 49.21986investment 75.51504 sea 77.45868 gandhi 48.86809bonds 64.23486 boat 75.97172 sikh 47.12099sec 61.89292 fishing 65.41328 indian 44.29306bond 61.39895 vessel 64.25243 peru 43.00298junk 61.14784 tanker 62.55056 hindu 42.79652milken 58.72266 spill 60.21822 lima 41.87559firms 51.26381 exxon 58.35260 kashmir 40.01138investors 48.80564 boats 54.92072 tamilnadu 39.54702lynch 44.91865 waters 53.55938 killed 39.47202insider 44.88536 valdez 51.53405 indias 39.25983shearson 43.82692 alaska 48.63269 punjab 39.22486boesky 43.74837 ships 46.95736 delhi 38.70990lambert 40.77679 port 46.56804 temple 38.38197merrill 40.14225 hazelwood 44.81608 shining 37.62768brokerage 39.66526 vessels 43.80310 menem 35.42235corporate 37.94985 ferry 42.79100 hindus 34.88001burnham 36.86570 fishermen 41.65175 violence 33.87917 (Sample aspect lists from AP data, 100-Aspect Model)
  6. 6. technorati.com/tag/<tag>…:• ”hovefestivalen”: 113 bloggposter, 739 bilder• ”hovefestivalen08”: 27 bloggposter, 20 bilder• ”hove+’08”: 19 bloggposter, 280 bilder• ”hovefestival”: 14 bloggposter, 282 bilder• ”hove”: 68 norske bloggposter, ? bilder• ”haga”: 47 norske (og svenske) bloggposter, 2300 bilder• ”hagasaken”: 0 bloggposter, 0 bilder• ”Åslaug+Haga”: 26 norske bloggposter, 1 bilde• ”Aslaug+Haga”: 4 norske bloggposter, 0 bilder
  7. 7. "semantisk"
  8. 8. Identity
  9. 9. Reference
  10. 10. Expressivity RDF / Topic Maps Taxonomies, thesauri Flat list, tags No model Closed model Open model
  11. 11. Meningsfylte sammenstillinger forutsetter deltsemantikk…
  12. 12. ”Nye ”Jeg vet sammenhenger hva jeg mellom…” ser etter…” ”Alt nytt om…”(Gjen)finne Forstå Følge med ”Oversikten ”Sammenhengen over…” mellom…”
  13. 13. Atom/RSS (inkl. podcasts) SMS/MMS IM/XMPP ”Abonnere Epost Kalendersynk. på et søk!” … • Registrering • “Discovery” • Notifikasjon • “Trust metrics” • Indeksering • Filtrering • Aggregering • Abonnement • Dele • Finne Indeks • Sammenstille • TilgjengeliggjørePRODUSENT MEDIATOR KONSUMENT
  14. 14. ” In some sense when people come toGoogle, that’s exactly what they’re asking for — our editorial judgment. They’reexpressed via algorithms. When someone comes to Google, the only way to be neutral is either to randomize the links or to do it alphabetically – Matt Cutts, Google, til Wired 3. mars 2011
  15. 15. Tom Coates, Yahoo: ”The web as it was”…
  16. 16. Tom Coates, Yahoo: ”Web of the future?”
  17. 17. <foaf:Person rdf:ID="me"><foaf:name>Stian Danenbarger</foaf:name><foaf:givenname>Stian</foaf:givenname><foaf:family_name>Danenbarger</foaf:family_name><foaf:mbox rdf:resource="mailto:stian@bouvet.no"/><foaf:homepage rdf:resource="http://twitter.com/stidan"/><foaf:workplaceHomepage rdf:resource="http://www.bouvet.no"/></foaf:Person>

×