Successfully reported this slideshow.
Your SlideShare is downloading. ×

Can education systems anticipate the challenges of AI?

Ad

UNESCO EDUCATION SECTOR
IIEP Strategic Debate: Can education
systems anticipate the challenges of AI?
Steve Vosloo, UNESCO...

Ad

UNESCO EDUCATION SECTOR 2
A brief history of AI

Ad

UNESCO EDUCATION SECTOR 3
AI is already in our lives. It is here, and yet it is only beginning …

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Ad

Loading in …3
×

Check these out next

1 of 20 Ad
1 of 20 Ad
Advertisement

More Related Content

More from Steve Vosloo (20)

Advertisement

Can education systems anticipate the challenges of AI?

  1. 1. UNESCO EDUCATION SECTOR IIEP Strategic Debate: Can education systems anticipate the challenges of AI? Steve Vosloo, UNESCO, 15 May 2018, IIEP-UNESCO Paris
  2. 2. UNESCO EDUCATION SECTOR 2 A brief history of AI
  3. 3. UNESCO EDUCATION SECTOR 3 AI is already in our lives. It is here, and yet it is only beginning …
  4. 4. UNESCO EDUCATION SECTOR 4 AI is the future, and it’s setting off a panicked race amongst countries …
  5. 5. UNESCO EDUCATION SECTOR 5 … with the emergence of national strategies
  6. 6. UNESCO EDUCATION SECTOR 6 … with the emergence of national strategies
  7. 7. UNESCO EDUCATION SECTOR 7 … and also a race between companies
  8. 8. UNESCO EDUCATION SECTOR 8 Computer vision: Facial recognition systems
  9. 9. UNESCO EDUCATION SECTOR 9 Natural language processing: The next interface
  10. 10. UNESCO EDUCATION SECTOR 10 Data mining and pattern recognition
  11. 11. UNESCO EDUCATION SECTOR 11 What does it mean, for example, for customer services, supply chain management and recruitment?
  12. 12. UNESCO EDUCATION SECTOR 12 Right now, AI in Ed is mostly promise and potential, but this is changing
  13. 13. UNESCO EDUCATION SECTOR 13 AI can improve the quality of education • Continuous use and assessment • Big data for learning analytics • Personalised, adaptive learning • Virtual mentors and chatbots • Real-time data for policy development
  14. 14. UNESCO EDUCATION SECTOR 14 Q1. Can AI itself help education systems anticipate the challenges of AI? How can AI itself shorten the distance between skills supply and demand, e.g. World Bank and LinkedIn partnership? “AI will make forecasting more affordable, reliable and widely available” (The Economist, 2018)
  15. 15. UNESCO EDUCATION SECTOR 15 What AI doesn't do well … or what is the human value add?
  16. 16. UNESCO EDUCATION SECTOR 16 Q2. What do we know about educating for an AI in Ed future today? In formal, non-formal, informal and work-based learning environments: - “Human” skills and competences include: critical thinking, creativity, social skills, emotional intelligence, digital citizenship - Data literacy  Carnegie Mellon to offer the first undergrad AI degree in the US (with a focus on ethics) - Focus on lifelong learning - Retraining on work taken over by AI
  17. 17. UNESCO EDUCATION SECTOR 17 Q4. Is it only IA vs us? The opportunity for intelligence augmentation (IA)
  18. 18. UNESCO EDUCATION SECTOR 18 Q3. What does this all mean for developing countries and equity? Will AI create growing inequalities between developed and developing countries, between those who own and/or create the technology, and those who only use it, as well as those people whose jobs may be impacted by AI? Is there a new adaptation divide? On the other hands, AI can support those with low literacy and digital skills  livelihoods.
  19. 19. UNESCO EDUCATION SECTOR 19 Gartner Hype Cycle 2017: AI at peak hype
  20. 20. UNESCO EDUCATION SECTOR 20 Steven Vosloo, Senior Project Officer UNESCO se.vosloo@unesco.org www.twitter.com/stevevosloo

Editor's Notes

  • Image: Copyright Pearson / Sudipta Dutta Chowdhury
  • In Greek mythology, Talos was a giant automaton made of bronze to protect Europa in Crete from pirates and invaders. He circled the island's shores three times daily. 400BC.

    In 1956, officially an academic domain.

    Lots of predictions, waves of optimism and AI “winters”. 1970, Marvin Minsky (in Life Magazine): "In from three to eight years we will have a machine with the general intelligence of an average human being."[62]

    On 11 May 1997, Deep Blue became the first computer chess-playing system to beat a reigning world chess champion, Garry Kasparov.[137] 

    The Economist, 2018: “AI will put an end to traditional ways of doing things and start a new era for business and for the world at large. It will be pervasive, devastating and exhilarating all at the same time.”
  • In smartphones: Predictive text, voice to text, Route suggestions
    Amazon recommendations
    Voice assistants, e.g. Alexa and Siri

    Questions:
    What is 1 + 1?
    Who is the DG of UNESCO?
    How do we achieve world peace?
  • GOVERNMENT
    China betting on it – wants to be global AI leader by 2030 in commerce, government and military
    The Pentagon is going to Silicon Valley to hire data scientists

  • COMMERCIAL
    Amazon calls itself an AI company
    Race to provide cloud services between Amazon, Google and Microsoft
    These companies are offering AI services in the cloud, e.g. image tagging and turning speech into text, open-source AI software and, increasingly data sets.

    Remember: AI is the umbrella term. Within that is machine learning, which since the advent of big data, has become increasingly powerful.

    You need an algorithm to teach, and you need data for it to learn. These are what are being introduced into the cloud.

    https://azure.microsoft.com/en-us/services/cognitive-services/face/?v=18.09
  • Supporting remote tests and certification
  • Image: CC NASA Earth Observatory https://flic.kr/p/jPnc4t
  • Work
    30 percent of “work activities” could be automated by 2030 and up to 375 million workers worldwide could be affected by emerging technologies.
     James Manyika, Susan Lund, Michael Chui, Macques Bughin, Jonathan Woetzel, Parul Batra, Ryan Ko, and Saurabh Sanghui, “Jobs Lost, Jobs Gained:  Workforce Transitions in a Time of Automation,” McKinsey Global Institute, December, 2017.
  • From Pearson and University College London report on AI in Ed
    https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/about-pearson/innovation/Intelligence-Unleashed-Publication.pdf
    Today:
    One-on-one digital tutoring to every student
    Tracking of student performance and providing analysis
    Voice interfaces and translation


    In the future:
    Lifelong learning companions powered by AI that can accompany and support individual learners throughout their studies – in and beyond school.
    New forms of assessment that measure learning while it is taking place, shaping the learning experience in real time.
    AI and IoT for better management of school resources

    The dream: quality, personalised learning at scale

    Image: https://flic.kr/p/dUjaJD Credit: GPE/Deepa Srikantaiah
  • https://www.linkedin.com/pulse/toward-linked-inclusive-economy-jim-kim/?CID=TAI_TT_ICT_EN_EXT
  • AI is good at predictable, repetitive tasks. It is very good at searching, data mining, looking for patterns. But it has no people skills, it can’t do understanding or rationalisation.

    Tarek R. Besold, City, University of London, UK
    https://stevevosloo.com/2017/12/14/online-educa-berlin-2017-rough-notes/
    Intelligent tutoring only works well on well-defined, narrow domains for which we have lots of data.
    Learning analytics is best used to track learner and teacher activities so as to identify individual needs and preferences to inform human intervention.

    Humans are good at understanding, empathy and relationships.

    In fact, of all the sectors McKinsey & Company examined in a report on where machines could replace humans, the technical feasibility of automation is lowest in education, at least for now. Why? Because the essence of teaching is deep expertise and complex interactions with other people, things that AI are not yet good at. Besold proposed the “human touch” as our value proposition.

    One encouraging consensus from the research is that, while there is concern that AI and robots will ultimately take over certain human jobs, teachers are safe. The role relies too much on the skills that AI is not good at, such as creativity and emotional intelligence.

    Question: how can AI and humans complement each other? What can we hand over to AI to help us, free our time and “augment” our intelligence?

    Image: World Bank CC https://www.flickr.com/photos/worldbank/8785371212/in/album-72157601441433631/
  • Image: CC Beryl_snw https://flic.kr/p/iVM5uF

    https://www.technologyreview.com/the-download/611125/carnegie-mellon-is-set-to-offer-the-first-undergrad-degree-in-ai-in-the-us/

  • One exmaple of how it can be different is by the Allegheny County Department of Human Services (DHS), Pennsylvania, USA, screen calls about the welfare of local children.

    To help, the Allegheny Family Screening Tool was developed. It’s a predictive-risk modeling algorithm built to make better use of data already available in order to help improve decision-making by social workers.

    Drawing on a number of different data sources, including databases from local housing authorities, the criminal justice system and local school districts, for each call the tool produces a Family Screening Score. The score is a prediction of the likelihood of future abuse.

    The tool is there to help analyse and connect a large number of data points to better inform human decisions. Importantly, the algorithm doesn’t replace clinical judgement by social workers – except when the score is at the highest levels, in which case the call must be investigated.

    Given the sensitivity of screening child welfare calls, the system had to be as robust and transparent as possible. Mozilla reports the ways in which the tool was designed, over multiple years, to be like this:

    A rigorous public procurement process.
    A public paper describing all data going into the algorithm.
    Public meetings to explain the tool, where community members could ask questions, provide input and influence the process. Professor Rhema Vaithianathan is the rock star data storyteller on the project.
    An independent ethical review of implementing, or failing to implement, a tool such as this.
    A validation study.

    The algorithm is open to scrutiny, owned by the county and constantly being reviewed for improvement.

    See https://www.ictworks.org/algorithmic-accountability-ict4d/

    Image: Shutterstock https://i1.wp.com/res.cloudinary.com/aleteia/image/fetch/c_fill,g_auto,w_620,h_310/https://aleteiaen.files.wordpress.com/2018/02/web3-algorithim-computer-hand-sad-boy-playground-comp-shutterstock.jpg?resize=620%2C310&quality=100&strip=all&ssl=1
  • Focusing criteria:
    Who’s AI?
    Which country and sector?
    Which time horizon?
    Which socio-economic group?

    https://upload.wikimedia.org/wikipedia/commons/thumb/2/28/A_Petrol_Attendant.jpg/1024px-A_Petrol_Attendant.jpg
  • http://www.cityam.com/270451/gartner-hype-cycle-2017-artificial-intelligence-peak-hype

×