Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
@zulfikar_ramzan | #cyberAI
AI: BOON OR
BOONDOGGLE?
Zulfikar Ramzan, PhD
Chief Technology Officer, RSA
@zulfikar_ramzan
#C...
@zulfikar_ramzan | #cyberAI
AI LEXICON
A CRASH COURSE
ARTIFICIAL
INTELLIGENCE
MACHINE
LEARNING
NEURAL
NETWORKS
DEEP NEURAL...
@zulfikar_ramzan | #cyberAI
K A SPA R OV VS D EEP B LU E
MACHINE LEARNING VS ARTIFICIAL INTELLIGENCE
@zulfikar_ramzan | #c...
@zulfikar_ramzan | #cyberAI
@zulfikar_ramzan | #cyberAI
APPLYING ML/AI TO CYBERSECURITY
@zulfikar_ramzan | #cyberAI
PITFALLS AND
CHALLENGES
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
SUPERVISED LEARNING
<Example 1, Label 1>
<Example 2, Label 2>
.
.
....
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
SUPERVISED LEARNING: MORE REFINED …
<Ex. 1, Label 1>
<Ex. 2, Label ...
@zulfikar_ramzan | #cyberAI
 Machine learning is garbage-in-garbage out
 Training set ideally has to be representative o...
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
Data
Features
Classifiers
PITFALL: BECOMING OBSESSED WITH CLASSIFIE...
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
# Good
instances
>> # Bad
Instances
Must
sidestep
many
landmines
Se...
@zulfikar_ramzan | #cyberAI
MACHINE LEARNING PITFALLS: ADVERSARIES ADAPT
Threat actors change
behaviors as needed;
time to...
@zulfikar_ramzan | #cyberAI
EMERGING AREAS
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
@zulfikar_ramzan | #cyberAI
FOOLING SELF-DRIVING CARS VIA PERTURBATIONS
Source: Evtimov et al. “Robust Physical Attacks on...
@zulfikar_ramzan | #cyberAI
USING CHATBOTS TO TROLL SCAMMERS (RESCAM)
Source: https://www.rescam.org/
@zulfikar_ramzan | #...
@zulfikar_ramzan | #cyberAI
THE IMPORTANCE OF LINE 23…
@zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
KEY CONCEPTS
AI and Machine Learning are powerful techniques with
m...
@zulfikar_ramzan | #cyberAI
THANK YOU
Zulfikar Ramzan, PhD
Chief Technology Officer, RSA
@zulfikar_ramzan
Upcoming SlideShare
Loading in …5
×

SXSW INTERACTIVE 2018 - ZULFIKAR RAMZAN PhD - RSA CTO - 'AI- BOON OR BOONDOGGLE?' - CMO CYBERSECURITY

109 views

Published on

'AI- BOON OR BOONDOGGLE?' - CMO CYBERSECURITY

Published in: Business
  • Be the first to comment

  • Be the first to like this

SXSW INTERACTIVE 2018 - ZULFIKAR RAMZAN PhD - RSA CTO - 'AI- BOON OR BOONDOGGLE?' - CMO CYBERSECURITY

  1. 1. @zulfikar_ramzan | #cyberAI AI: BOON OR BOONDOGGLE? Zulfikar Ramzan, PhD Chief Technology Officer, RSA @zulfikar_ramzan #CyberAI
  2. 2. @zulfikar_ramzan | #cyberAI AI LEXICON A CRASH COURSE ARTIFICIAL INTELLIGENCE MACHINE LEARNING NEURAL NETWORKS DEEP NEURAL NETWORKS @zulfikar_ramzan | #cyberAI Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed --Arthur Samuelson, 1959
  3. 3. @zulfikar_ramzan | #cyberAI K A SPA R OV VS D EEP B LU E MACHINE LEARNING VS ARTIFICIAL INTELLIGENCE @zulfikar_ramzan | #cyberAI Photograph: Stan Honda/AFP/Getty Images
  4. 4. @zulfikar_ramzan | #cyberAI
  5. 5. @zulfikar_ramzan | #cyberAI APPLYING ML/AI TO CYBERSECURITY
  6. 6. @zulfikar_ramzan | #cyberAI PITFALLS AND CHALLENGES
  7. 7. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI SUPERVISED LEARNING <Example 1, Label 1> <Example 2, Label 2> . . . <Example N, Label N> Generate Model Apply Model: <New Example, ??> Example: Historical loan applications; labels represent whether applicant defaulted. Generate model that can predict whether new applicant will default.
  8. 8. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI SUPERVISED LEARNING: MORE REFINED … <Ex. 1, Label 1> <Ex. 2, Label 2> . . . <Ex. N, Label N> Generate Model Apply Model: <New Example, ??> Extract features Example: Extract relevant attributes from loan application (e.g., years of employment, age, marital status, loan size, income). Generate model / classification algorithm from those features. (Feature identification is typically performed by a human domain expert.) Example: Extract relevant attributes from loan application (e.g., years of employment, age, marital status, loan size, income). Generate model / classification algorithm from those features. (Feature identification is typically performed by a human domain expert.)
  9. 9. @zulfikar_ramzan | #cyberAI  Machine learning is garbage-in-garbage out  Training set ideally has to be representative of what you will actually encounter in real life  Ultimately, you have to ask the right questions of your data, otherwise you won’t get the right answers. CHALLENGE: GOOD DATA IS CRITICAL @zulfikar_ramzan | #cyberAI
  10. 10. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI Data Features Classifiers PITFALL: BECOMING OBSESSED WITH CLASSIFIER Degreeofimportance Amountoftimespent 011100 110100 110001
  11. 11. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI # Good instances >> # Bad Instances Must sidestep many landmines Security scenarios: Class Imbalance Problem CHALLENGES: CLASS IMBALANCE IN SECURITY
  12. 12. @zulfikar_ramzan | #cyberAI MACHINE LEARNING PITFALLS: ADVERSARIES ADAPT Threat actors change behaviors as needed; time to change is correlated with how big a threat you are to their operations Machine learning algorithms typically don’t assume adversarial scenarios where threat is actively trying to sabotage the algorithm Can address through careful weighting of recent data vs. older data, rapid retraining/relearning, online learning Transfer learning or inductive transfer is area of research designed for developing ML algorithms that try to use knowledge gained from solving one problem towards different, but related problem Much work remains to be done in these areas @zulfikar_ramzan | #cyberAI
  13. 13. @zulfikar_ramzan | #cyberAI EMERGING AREAS
  14. 14. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI
  15. 15. @zulfikar_ramzan | #cyberAI FOOLING SELF-DRIVING CARS VIA PERTURBATIONS Source: Evtimov et al. “Robust Physical Attacks on Deep Learning Models”; https://arxiv.org/pdf/1707.08945.pdf
  16. 16. @zulfikar_ramzan | #cyberAI USING CHATBOTS TO TROLL SCAMMERS (RESCAM) Source: https://www.rescam.org/ @zulfikar_ramzan | #cyberAI
  17. 17. @zulfikar_ramzan | #cyberAI THE IMPORTANCE OF LINE 23…
  18. 18. @zulfikar_ramzan | #cyberAI@zulfikar_ramzan | #cyberAI KEY CONCEPTS AI and Machine Learning are powerful techniques with many wonderful security applications They are not panaceas Technology will continue to improve and it’s incumbent on us to use it responsibly
  19. 19. @zulfikar_ramzan | #cyberAI THANK YOU Zulfikar Ramzan, PhD Chief Technology Officer, RSA @zulfikar_ramzan

×