avaya.comAvaya Virtual Services                                                                                           ...
avaya.comThe key benefits of the                         designed for network-related functions such       It’s carrier-cl...
avaya.comwithin physical constraints, we’ve now            OPEX; a prime example being split-plane         networking reso...
avaya.com• Hitless software patching without reload  of the complete system image• Instantaneous re-route across all ports...
avaya.comSimple, flexible and dynamic                     • Key Health Indicators to provide system       designed to supp...
avaya.com                                                                          SpecificationsGeneral & Performance    ...
avaya.comIEEE & IETF Standards Compatibility (cont.)IP• RFC 1340 Assigned Numbers                                         ...
IEEE & IETF Standards Compatibility (cont.) Weights & Dimensions  • Height: 61.91 cm (24.375 in.) or 14RU                 ...
Upcoming SlideShare
Loading in …5

Avaya VSP 9000 Virtual Servers


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Avaya VSP 9000 Virtual Servers

  1. 1. avaya.comAvaya Virtual Services core network architecture but also offers enhanced flexibility and scalability to enable faster time-to-service in both data centerPlatform 9000 and very large campus core deployment scenarios. By enabling the virtualized compute infrastructure to be more mobile,An agile, streamlined, next-generation Ethernet Switching predictable, and available, the VSP 9000 fully delivers on the promise of centralizingsolution that delivers high-performance, high-capacity, and services, all without compromising the high availability, performance, and security that’shigh-availability for mission-critical data centers and very required in an enterprise environment.large campus core networks. Who has the VSP 9000The progressive evolution of the data center The Virtual Services Platform 9000 (VSPhas created a new networking environment, 9000) is a next-generation solution for been developed for?no longer simply an extension of the mission-critical data centers and campus The VSP 9000 has been specificallyenterprise campus; the data center has core networks, designed for the needs of developed for organizations that:developed into an autonomous network with large enterprises, and other such as multi-specific requirements and challenges. The tenant operators. The VSP 9000 rises to • Require scalable, high-density 10GbEVirtual Service Platform 9000 is the future- meet customer requirements for a future- today, and with continued growth willready and future-proof solution to deliver the proof, ultra-reliable network that easily need to position for future 40/100GbEsought-after combination of performance, and cost-effectively facilitates servicesreliability, and scalability. integration; it provides a less complex, • Are suffering from performance more agile virtual network infrastructure. limitations that result in poor applicationWith mission-critical application demands It simplifies the network and helps reduce responsivenessincreasing networks are required to ensure the cost of deploying new services; theuninterrupted business operations and a VSP 9000 enables the building of a • Demand best-in-class resiliencyquality user experience. Networks are called dynamic data center, helping to deliverupon to provide 24 x 7 access, help drive • Need to simplify network infrastructure 24x7 uninterrupted access to enterprisebusiness agility, accelerate time-to-service, operations in a highly virtualized applications and services.respond to the needs of new applications environmentand increase efficiency – all while IT The VSP 9000 delivers industry-leading • Are required to deliver virtual services forbudgets are being pressurized to deliver performance and scalability, with immediate multiple customers or user groups in amore and more efficiency. support for very high-density 1 and 10 cloud computing environment Gigabit Ethernet, in addition to being future-Individual business imperatives will continue ready for the emerging 40 and 100 Gigabit The VSP 9000 is for organizations that needto evolve and so too must the network; Ethernet standards. The fully scalable to stabilize IT costs and make maximize thecost-effectively adapting – forklift upgrades architecture helps ensure that network cost-effective use of their infrastructures.cause excessive disruption. The need is for capacity seamlessly scales in line with It is for companies that are virtualizinga platform that is flexible and versatile, performance requirements, without complex to increase the efficient and flexible useeasily accommodates both growth and or expensive re-engineering. of servers and appliances, and want tochange – a platform that delivers support for reduce maintenance costs. It is for thosenew applications ahead of the pack. Equally The VSP 9000 transforms the network who are running out of space in the dataimportant, that platform must be space and and, as a result, the business, providing center and are experiencing exponentialenergy efficient. The right communications an ultra-reliable foundation for services increases in power and cooling costs. It issolution is critical to your success; the such as communications-enabled ERP for organizations that want to simplify, save,Avaya Virtual Services Platform 9000 is that and CRM business processes, and unified and equip their networks for the future.solution. communications. It not only simplifies theFACT SHEET 1
  2. 2. avaya.comThe key benefits of the designed for network-related functions such It’s carrier-class reliable... as efficient examination and manipulationVSP 9000 of packet headers. Avaya’s specialized high- The VSP 9000 builds upon Avaya’s solid foundation of always-on technology to performance NPU is known as the Route• A future-proof platform, offering an deliver maximum availability and continuity Switch Processor (RSP) and is an in-house unmatched architecture that scales up to of business operations with zero service development. It delivers fast-path protection 27 terabits per second interruption. The VSP 9000 Operating through its ability to support in-life firmware System is based on a carrier-class real-time• Delivers very high-density 1 and upgrades and provides 10Gbps line rate Linux operating system – and is market- 10 Gigabit Ethernet today, meeting switching and routing capabilities regardless proven by a huge, global carrier installed immediate performance and reliability of Standards evolution base where resiliency and scalability are needs The VSP 9000 leverages the RSP to deliver absolutely critical. Avaya Data Solutions• Is future-ready for a seamless evolution to faster implementations of new, performance- have a deep heritage of carrier-grade 40 and 100 Gigabit Ethernet optimized functionalities, thus meeting the resiliency with our pioneering Switch needs of evolving applications without ASIC Clustering technology utilizing split multi-• An ultra-reliable platform, helping to re-spins and major hardware changes. link trunking and routed split multi-link ensure uninterrupted business operations trunking. The VSP 9000 takes this to the next level by providing network failover in• Helps to lower operating costs, by How the VSP 9000 less than 20 milliseconds. Instantaneous all- reducing management complexity and port re-routing means dramatically reduced delivers simplifying the architecture packet loss. Innovative “in-service control The VSP 9000 is designed to meet three plane integrity check” and “rapid failure critical network requirements, and the detection and recovery of data path” provideMeeting the need VSP 9000 has the power to meet these system-level health check and self-healingThe VSP 9000 is specifically designed to requirements today, and to also scale as capabilities. Hitless patching enables onesupport new and emerging requirements. the business evolves and grows – an agility software module to be patched without theVirtual application LANs enable applications that delivers best-in-class longevity and requirement to reload the complete systemhosted on virtual machines to move – on investment protection. image, thereby minimizing maintenancedemand – from one location to another down time. And redundant control processorin a completely seamless fashion, and It’s the foundation for the future.... and switch fabric modules help ensureapplication-specific deep-packet filters help The VSP 9000 supports an initial 240 port the VSP 9000 handles business criticalto ensure that only relevant traffic enters of 10G Ethernet in a compact 14RU information with utmost reliability.the virtual application LAN, delivering Chassis – allowing three chassis perapplication security. rack – and is based on a switching It’s your gateway to simplified and architecture that scales up to a 27Tbps, agile virtual network services…The networking industry is a perpetual or over 100Tbps in a quad Switch Cluster This platform enables future serviceswork-in-progress, an ‘unfinished configuration. Initial IPv4 forwarding rate is integration that can help consolidate andmasterpiece’, and the number of standards 1050Mpps per system. This architecture, simplify network deployments. Avaya hasand recommendations now runs into the combined with a lossless crossbar pioneered a faster, simpler way to providethousands. Equipment that is based on a fabric, allows for seamless evolution to agile virtual network services. The VSP 9000traditional ASIC architecture is limited in the emerging 40G and 100G Ethernet advances this innovation, offering layer 2that these are set at a certain point in this standards, for future services integration, and 3 VPN services and “Application VPNs”history and cannot easily adapt to future and the delivering of Converged Enhanced based on technologies that far surpass rivalchange. Typically this means that newer Ethernet support. Leveraging the fully industry offerings: including IP VPN-Lite,features and functionality are supported only programmable RSP provides the VSP 9000 Shortest Path Bridging, and Virtual Controlin hardware and require additional software with the flexibility to incorporate future Service.processing. The switching architecture of standards and protocol developmentsthe VSP 9000 is uniquely based on Network without a forklift upgrade, thus ensuring The introduction of virtualization hasProcessing Units (NPU) rather than the ASIC optimal performance and investment fundamentally changed how compute,technology typically found in rival products. protection. network and storage resources are usedNPUs are large-scale CPU arrays specifically and managed. From fixed sets of resources2
  3. 3. avaya.comwithin physical constraints, we’ve now OPEX; a prime example being split-plane networking resources and personnel. Whenmoved to virtual machines that can be next-generation wireless networking, where combined with Virtual Control Service,created, moved, and removed on demand, the control plane functionality is decoupled SPBM can – for example – provideand whose resource parameters can be and re-located to the core/data center, “Application VPNs” to help ensure thatchanged dynamically. There is often a freeing-up the data path for full performance VMware VMotion virtual applications withinrequirement for virtual machines to be optimization. and between data centers are dynamicallymoved from one physical server to another and seamlessly moved or extended, withoutover disparate geographies. Additional virtualization capability will be the provisioning complexity associated with added in upcoming releases, including Avaya rival solutions. SPBM, an IEEE 802.1aqAs multi-core processing architectures IP VPN-Lite, Shortest Path Bridging, and draft standard, offers a robust, resilientand virtualization trends take hold, Virtualization Provisioning Service. alternative to today’s existing offerings andnew possibilities have emerged in how it delivers Ethernet-based services andapplications can be written. Newer, more IP VPN-Lite solutions while maintaining Ethernet’s keypowerful distributed applications are being value propositions of simplicity and cost- Avaya IP VPN-Lite is a unique, affordabledeveloped and older applications are being effectiveness. and easy-to-use alternative to MPLS IPretrofitted into the new service-oriented VPN. IP VPN-Lite allows you to deploy VPNarchitectures. An optimized network must Virtualization Provisioning Service services in the metro and campus withoutsupport the unprecedented agility of this the complexity, cost and burdensome Avaya’s Virtualization Provisioning Servicevirtualized compute environment. training requirements associated with (VPS) improves efficiency and flexibility MPLS. IP VPN-Lite runs over any flavor of when managing highly dynamic virtualVRF-Lite IP routed core network, helping ensure a machine environments across the extendedAvaya VRF-Lite allows you to use the same low-touch deployment. It utilizes IP-in-IP data center. Enhanced orchestration andhardware platform to create multiple layer encapsulation and any-to-any connectivity management tools optimize the efficiency of3 routing domains in supporting multiple with scalability that is equivalent to MPLS; VMware vCenter live migrations, facilitatingcustomers or user groups. all of the benefits of MPLS but without the more efficient real-time maintenance, notorious disadvantages. dramatically improving time-to-service,In allowing the switch to have multiple reducing errors, delivering effectiverouting instances, more sophisticated If a service provider-supplied MPLS WAN disaster recovery, and lowering total cost ofconnections are made possible and in place already exists, IP VPN-Lite can ownership.overlapping IP address spaces are be used to seamlessly extend existing VPNsupported. The system can be configured to connections into the campus or metro area.provide inter-VRF forwarding capabilities to In deploying IP VPN-Lite in this fashion, The VSP 9000 can offerallow access to common resources without there’s no need to change the WAN and noincurring additional capital or operational requirement to deploy MPLS in the campus. you:expenses. • Very high density 10 Gigabit, and 1 IP VPN-Lite offers simplified management, Gigabit, Ethernet aggregationCombining VRF-Lite with other emerging administration, troubleshooting andtechnologies can provide a seamless maintenance versus the more complex, • Future-ready platform for 40/100 Gigabitconnectivity environment for virtual users, multi-layered MPLS. It can be leveraged Ethernetconnecting from anywhere in the enterprise as a standalone, cost-effective alternative • Fully redundant hardware with no singlenetwork or branch offices without complex to MPLS or as an extension to current point-of-failureset-up or configuration. MPLS deployments, offering less complex management, training and maintenance. • Hardened carrier-class operating systemServices integration Shortest Path Bridging - MAC • Highly-available equipment-level device,The lossless fabric architecture, along with combining with native support for Avaya’sits 27Tbps switching capability and ultra- Shortest Path Bridging – MAC (SPBM) Switch Clustering architecture to deliverreliability, allows future services integration offers the ability to create a simplified an always-on network-level solutionto simplify how enterprise data centers can network layer that can dynamically virtualizebe architected. The combination of services elements of the network to fully and • Built in diagnostics such as ingress/egressintegration and virtual network services will efficiently utilize network and computing mirroring, L3 remote mirroring, packetdrive network simplicity and ultimately lower resources, thus reducing the strain on capturing, filter logging 3
  4. 4. avaya.com• Hitless software patching without reload of the complete system image• Instantaneous re-route across all ports to minimize packet loss• Efficient layer 2 and 3 network virtualization services providing supports for multiple customers and user groups on the same platform• A robust, resilient alternative to today’s existing, often complex and/or compromised, offeringsWhat’s on the Chassis?The front of the VSP 9000 contains the I/Oslots, dual Control Processor modules andcooling fans; supporting ten I/O slots. Beinga compact 14RU means that one 7-foot rack Virtual Services Platform 9000 (front & rear views)can hold three VSP 9000 Chassis. Threemodule types are being offered initially:24-port 10GbE SFP+ (also capable of architecture in which the load is dynamically and investment protection for layer 2-4support 1GbE), 48-port 1GbE SFP and distributed and shared, and in the event 10Gbps line-rate capabilities without48-port 10/100/1000. of a switch fabric failure any performance requiring forklift upgrades for future constraint is gracefully managed. The standardsThere are two Control Processor modules auxiliary module slots are reserved for futureoffering 1+1 redundancy, with the control use. • Initial IPv4 forwarding rate of over oneplane decoupled from the Switching Fabric, billion packets per second, per system,leveraging a mid-plane architecture. Two allowing for more efficient data transferredundant cooling fans are provided for How can your networkside-to-side cooling for the I/O and Control • Over 100Tbps system architecture in a benefit? quad Switch Cluster configurationProcessor modules. The speed of the coolingfans is automatically adjusted depending The VSP 9000 is designed to maximize theon system temperature and fan status, with efficiency and potential of your network: Reliablesensors located on each slot to test the • Unmatched resiliency powered by Avayatemperature and manage the fan speed A future-proof platform unique Switch Clustering capability (usingaccordingly. • Very high density – 240 port of 10G split multi-link trunking and Routed Split Ethernet or 480 ports of 1G support from Multi-Link Trunking technology); HighThe rear of the chassis contains the power Availability mode engages all links when Day 1supplies, cooling fans, switch fabric forwarding traffic, resulting in industry-and auxiliary modules. There are six • Highly scalable lossless fabric leading performance and maximization ofpower supplies with N+1 and grid feed architecture supporting future 40Gbps investmentredundancy, and the power requirements are and 100Gbps interface connectivity,automatically load-shared across all installed services integration, Converged Enhanced • Instantaneous all-port re-routing results inunits. Two additional redundant cooling Ethernet and future enabling the the elimination of packet lossfans provide front-to-back cooling for the expansion of the infrastructure to alignswitch fabric and auxiliary modules. • Redundant and hot swappable control with the needs of your business processor and switch fabric modules,There are up to six switch fabric modules • Field-programmable RSP network plus redundant cooling fans and powerwith N+1 redundancy. This is a distributed processor delivers flexible data forwarding supplies, for unparalleled reliability4
  5. 5. avaya.comSimple, flexible and dynamic • Key Health Indicators to provide system designed to support the needs of an evolving operators an view of system health on all virtualized compute environment.• Helps ensure an uninterrupted virtual levels: OS, system applications /protocols application transition within and between With a highly-scalable switching I/O modules, ports and the forwarding data centers (dynamic application architecture, the VSP 9000 provides path allocation of a VMware application) an efficient platform for flexible scaling • Checksum logic tests to determine if and growth to meet future network and• Multi-Terabit Switch Clustering optimizes hardware, firmware or data corruption has application requirements by quickly adapting virtual routing and forwarding capacity for occurred to business needs, without the need for a multiple customers, enabling always-on forklift upgrade in the availability-sensitive and concurrent forwarding of Layer 2-3 • Memory error-code detection and network core. Avaya offers core-to-edge traffic across all links correction network solutions that ensure design efficiency and lower operational burden. • Detailed packet statistics and counters forAchieving maximum failure debugginguptime The bottom line • The ability to remotely update flash The VSP 9000 is purpose-built to supportEnsuring uninterrupted business operations images dynamic data center and high-density 10GErequires a reliable and resilient platform • Dual flash images to assist when restoring core deployments. It alleviates infrastructurewith no single point-of-failure, and the VSP complexity and reduces power consumption9000 can deliver this. From the very outset, • Card-based Flash Memory for log capture with a truly scalable architecture; it isthe VSP 9000 was designed and developed and retrieval designed to be the high-performanceon the basis of leading-edge hardware platform for the next decade.resiliency. It provides 1+1 control plane • Common alarms and loggingredundancy, with separate management Uptime is of the essence – mission-criticalpath between the control plane and I/O, • LED indication on cards to indicate applications must be delivered 24x7,5+1 switch fabric redundancy, 5+1 power activity and system health without interruption – and the ultra-resilientsupply or grid-feed redundancy, and system VSP 9000 delivers against this challenge.cooling fan redundancy. In-service control • Process separation The VSP 9000 empowers the servicesplane integrity check, rapid detection needed today and positions networks for the This future-proof platform features unique,and recovery of data path and hardware evolving and emerging needs of tomorrow, field-proven technologies, including Switchassist are designed to protect the control and it does so with a foundation that can be Clustering and IP VPN-Lite, and an onlineplane against denial-of-service attacks and trusted. packet capture functionality for all ports.system overload, and are just some of themechanisms in place to ensure system The VSP 9000 provides for cost-effectiveavailability. Why choose Avaya and efficient upgrades to meet evolving Avaya has the ability to work within multi- network and application requirements,However, uptime maximization also requires reducing operating expenses and protecting vendor environments but can also serve assoftware that allows for easy and efficient network investments as businesses grow. your sole provider for efficient networkingmanagement of your network. The VSP Virtualization sees to that, assuring across all layers of the data center and9000 utilizes a carrier-grade Linux operating continuity, offering innovative “Application campus, core to edge. Avaya is deliveringsystem, and combines this with a complete VPNs” and layer 2-3 VPN services while carrier-grade reliability to the enterpriseset of reporting capabilities and operation- simplifying the network. The Avaya VSP network.focused features to help ensure this is 9000 is the platform for today, and theachieved with streamlined efficiency. The VSP 9000 uses unique and innovation network for business evolution. technologies to achieve both performanceReporting features include: and resiliency, and delivers these in a Learn More• A “flight recorder” style logging capability fully interoperable solution to enable to help with continuous real-time network- and system-level self-healing for To learn more about the Avaya Virtual monitoring of internal control message uninterrupted business operations. The Service Platform 9000, contact your Avaya flows powerful network virtualization technologies Account Manager, Avaya Authorized Partner used in the VSP 9000 are specifically or visit us at: www.avaya.com. 5
  6. 6. avaya.com SpecificationsGeneral & Performance • Switch architecture: 27Tbps gross capacity • IP Forwarding Table: 500k • Policy-based Routing • 9090SF Switch Fabric capacity: up to 8.4Tbps • ECMP Routes: up to 64k • Flow-based Policers: up to 16k • 9090SF per Slot Packet Switching capacity: 480Gbps Aggregate Bi-Directional • RIP Instances: up to 64 • Hardware-assisted ACL/ACE • Initial Frame forwarding rate: up to 1,050Mpps • RIP Routes: up to 10k • Filter Logging • Frame length: 64 to 1518 Bytes (802.1Q Untagged), 64 to 1522 bytes (802.1Q Tagged) • OSPF Instances: up to 64 • On-box Packet Capture • Jumbo Frame support: up to 9.6 KBytes • OSPF Adjacencies: up to 512 • On-box Packet Capture • Multi-Link/Split Multi-Link Trunks: up to 512 Groups, with 16 Links per Group • OSPF Routes: up to 64k Mirroring: 1:1 M:1, 1:M, M:M • VLANs: up to 4k • BGP Peers: up to 256 • Remote Mirroring: up to 32 ports • Multiple Spanning Tree Instances: up to 64 • BGP Routes: up to 1,500m • MAC Address: up to 128k • VRF instances (IPv4): up to 512 • IP Interfaces: 4,343 • PIM Active Interfaces: up to 512 • Dynamic ARP Entries: up to 64k • IP Multicast Streams: up to 4k (with SMLT) • VRRP Interfaces: up to 512System • 9012 12-Slot Chassis with 10 Interface Module Slots • 9090SF 1.4Tbps Switch Fabric Module • 9080CP Control Processor Module • 9006AC 2kW Power SupplyInterface Modules • 9024XL 24-port 10G Ethernet SFP+ Interface Module • 9048GT 48-port 1000BASE-T Ethernet Interface Module • 9048GB 48-port 1G Ethernet SFP Interface ModuleIEEE & IETF Standards Compatibility • IEEE 802.1D MAC bridges (Spanning Tree Protocol) • RFC 1122 Requirements for Internet Hosts • IEEE 802.1p Priority Queues • RFC 1253 OSPF • IEEE 802.1Q VLAN Tagging • RFC 1256 ICMP Router Discovery • IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) • RFC 1305 Network Time Protocol v3 Specification, Implementation and Analysis3 • IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) • RFC 1340 Assigned Numbers • IEEE 802.1v VLAN Classification by Protocol and Port • RFC 1541 Dynamic Host Configuration Protocol1 • IEEE 802.1X Ethernet Authentication Protocol • RFC 1542 Clarifications and Extensions for the Bootstrap Protocol • IEEE 802.1AX Link Aggregation Control Protocol (LACP) • RFC 1583 OSPFv2 • IEEE 802.3 CSMA/CD Ethernet (ISO/IEC 8802-3) • RFC 1587 The OSPF NSSA Option • IEEE 802.3ab 1000BASE-T Ethernet • RFC 1591 DNS Client • IEEE 802.3ab 1000BASE-LX Ethernet • RFC 1723 RIP v2 – Carrying Additional Information • IEEE 802.3ab 1000BASE-ZX Ethernet • RFC 1745 BGP / OSPF Interaction • IEEE 802.3ab 1000BASE-CWDM Ethernet • RFC 1771 / RFC 1772 BGP-4 • IEEE 802.3ab 1000BASE-SX Ethernet • RFC 1812 Router Requirements • IEEE 802.3ab 1000BASE-XD Ethernet • RFC 1866 HTMLv2 Protocol • IEEE 802.3ab 1000BASE-BX Ethernet • RFC 1965 BGP-4 Confederations • IEEE 802.3ae 10GBASE-X • RFC 1966 BGP-4 Route Reflectors • IEEE 802.3i 10BASE-T Auto-Negotiation • RFC 1998 An Application of the BGP Community Attribute in Multi-home Routing • IEEE 802.3 10BASE-T Ethernet • RFC 1997 BGP-4 Community Attributes • IEEE 802.3u 100BASE-TX Fast Ethernet (ISO/IEC 8802-3, Clause 25) • RFC 2068 Hypertext Transfer Protocol • IEEE 802.3u 100BASE-FX • RFC 2131 Dynamic Host Control Protocol (DHCP) • IEEE 802.3u Auto-Negotiation on Twisted Pair (ISO/IEC 8802-3, Clause 28) • RFC 2138 RADIUS Authentication • IEEE 802.3x Flow Control on the Gigabit Uplink port • RFC 2139 RADIUS Accounting • IEEE 802.3z Gigabit Ethernet • RFC 2178 OSPF MD5 cryptographic authentication / OSPFv2 • RFC 768 UDP Protocol • RFC 2236 IGMPv2 for snooping • RFC 783 TFTP Protocol • RFC 2270 BGP-4 Dedicated AS for sites/single provide • RFC 791 IP Protocol • RFC 2328 OSPFv2 • RFC 792 ICMP Protocol • RFC 2338 VRRP: Virtual Redundancy Router Protocol • RFC 793 TCP Protocol • RFC 2362 PIM-SM • RFC 826 ARP Protocol • RFC 2385 BGP-4 MD5 authentication • RFC 854 Telnet Protocol • RFC 2439 BGP-4 Route Flap Dampening • RFC 894 A standard for the Transmission of IP Datagrams over Ethernet Networks • RFC 2453 RIPv2 Protocol • RFC 896 Congestion control in IP/TCP internetworks • RFC 2796 BGP Route Reflection – An Alternative to Full Mesh IBGP • RFC 903 Reverse ARP Protocol • RFC 2819 Remote Monitoring (RMON) • RFC 906 Bootstrap loading using TFTP • RFC 2918 Route Refresh Capability for BGP-4 • RFC 950 Internet Standard Sub-Netting Procedure • RFC 2992 Analysis of an Equal-Cost Multi-Path Algorithm • RFC 951 / RFC 2131 BootP / DHCP • RFC 3065 Autonomous System Confederations for BGP • RFC 1027 Using ARP to implement transparent subnet gateways/ • RFC 3376 Internet Group Management Protocol, v3 Nortel Subnet based VLAN • RFC 3569 An overview of Source-Specific Multicast (SSM) • RFC 1058 RIPv1 Protocol • RFC 1112 IGMPv16
  7. 7. avaya.comIEEE & IETF Standards Compatibility (cont.)IP• RFC 1340 Assigned Numbers • RFC 3513 Internet Protocol Version 6 (IPv6) Addressing Architecture• RFC 1519 Classless Inter-Domain Routing (CIDR): an • RFC 3587 IPv6 Global Unicast Address Format Address Assignment and Aggregation StrategyQuality of Service (QoS)• RFC 2474 / RFC 2475 DiffServ Support • RFC 2598 An Expedited Forwarding PHB• RFC 2475 An Architecture for Differentiated Service • RFC 2597 / RFC 2598 DiffServ per Hop Behavior• RFC 2597 Assured Forwarding PHB GroupNetwork management • RFC 1930 Guidelines for creation, selection, and registration of an Autonomous System (AS)• RFC 1155 SMI • RFC 2541 Secure Shell Protocol Architecture• RFC 1157 SNMP • RFC 2571 An Architecture for Describing SNMP Management Frameworks• RFC 1215 Convention for defining traps for use with the SNMP • RFC 2572 Message Processing and Dispatching for the Simple Network• RFC 1269 Definitions of Managed Objects for the Border Gateway Protocol: v3 Management Protocol (SNMP)• RFC 1271 Remote Network Monitoring Management Information Base • RFC2573 SNMP Applications• RFC 1305 (NTP client / unicast mode only) • RFC 2574 User-based Security Model (USM) for v3 of the Simple Network• RFC 1350 The TFTP Protocol (Revision 2) Management Protocol (SNMPv3)• RFC 1354 IP Forwarding Table MIB • RFC 2575 View-based Access Control Model (VACM) for the Simple Network• RFC 1389 RIP v2 MIB Extensions Management Protocol (SNMP)• RFC 1757 / RFC 2819 RMON • RFC 2576 Coexistence between v1, v2, & v3 of the Internet standard Network• RFC 1907 SNMPv2 Management Framework• RFC 1908 Coexistence between v1 & v2 of the Internet-standard Network Management FrameworkMIBs • RFC 1850 OSPF MIB • RFC 2021 RMON MIB using SMIv2• RFC 1156 MIB for network management of TCP/IP • RFC 2096 IP Forwarding Table MIB• RFC 1212 Concise MIB definitions • RFC 2452 IPv6 MIB: TCP MIB• RFC 1213 TCP/IP Management Information Base • RFC 2454 IPv6 MIB: UDP MIB• RFC 1213 MIB II • RFC 2466 IPv6 MIB: ICMPv6 Group• RFC 1354 IP Forwarding Table MIB • RFC 2578 Structure of Management Information v2 (SMIv2)• RFC 1389 RIP v2 MIB Extension • RFC 2674 Bridges with Traffic MIB• RFC 1389 / RFC 1724 RIPv2 MIB extensions • RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol• RFC 1398 Ethernet MIB • RFC 2863 Interface Group MIB• RFC 1442 Structure of Management Information for version 2 of the Simple • RFC 2925 Remote Ping, Traceroute & Lookup Operations MIB Network Management Protocol (SNMPv2) • RFC 2932 IPv4 Multicast Routing MIB• RFC 1450 Management Information Base for v2 of the Simple Network • RFC 2933 IGMP MIB Management Protocol (SNMPv2) • RFC 2934 PIM MIB• RFC 1573 Interface MIB • RFC 3416 v2 of the Protocol Operations for the Simple Network Management Protocol• RFC 1650 Definitions of Managed Objects for the Ethernet-like Interface Types (SNMP)• RFC 1657 BGP-4 MIB using SMIv2 • RFC 4022 Management Information Base for the Transmission Control Protocol (TCP) • RFC 4113 Management Information Base for the User Datagram Protocol (UDP) 7
  8. 8. IEEE & IETF Standards Compatibility (cont.) Weights & Dimensions • Height: 61.91 cm (24.375 in.) or 14RU • Weight (empty): 73 kg (160 lb) • Width: 44.45 cm (17.5 in.) • Weight (fully loaded): 131 kg (288 lb) • Depth: 82.55 cm (32.5 in.) Cooling system • Two side-to-side fan trays • Two front-to-back fan trays Safety agency approvals • UL/CSA-60950-1 • IEC60950-1 CB scheme with all country differences • EN60950-1 Environmental specifications • Operating temperature: 0°C to 40°C (32°F to 104°F) • Operating altitude: 3024 m (10,000 ft) maximum • Storage temperature: -25°C to 70°C (-13°F to 158°F) • Storage altitude: 3024 m (10,000 ft) maximum • Operating humidity: 10% to 90% relative humidity, non-condensing • Free fall/drop: ISO 4180-s, NSTA 1A • Storage humidity: 0% to 90% relative humidity, non-condensing • Vibration: IEC 68-2-6/34 Electromagnetic emissions summary • FCC Part 15 (CFR 47) (USA) Class A • CISPR24 • ICES-003 (Canada) Class A • EN55024 • EN55022 (Europe) Class A • EN61000-3-2 • CISPR22 (International) Class A • EN61000-3-3 • AS/NZS CISPR22 (Australia and New Zealand) Class A • EN300 38 • VCCI (Japan) Class AAbout AvayaAvaya is a global leader in enterprise communications systems. The companyprovides unified communications, contact centers, and related services directlyand through its channel partners to leading businesses and organizationsaround the world. Enterprises of all sizes depend on Avaya for state-of-the-artcommunications that improve efficiency, collaboration, customer service andcompetitiveness. For more information please visit www.avaya.com.© 2011 Avaya Inc. All Rights Reserved.Avaya and the Avaya Logo are trademarks of Avaya Inc. and are registered in the United States and other countries.All trademarks identified by ®, TM or SM are registered marks, trademarks, and service marks, respectively, of Avaya Inc. avaya.comAll other trademarks are the property of their respective owners. Avaya may also have trademark rights in other terms used herein.References to Avaya include the Nortel Enterprise business, which was acquired as of December 18, 2009.02/11 • DN4535-02