Pulsecor Presentation

1,875 views

Published on

Published in: Health & Medicine
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,875
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
66
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Go 20090428 0917
  • Go 20080815 0856 Go 20080822 1350
  • Check AI
  • Ward 20080401 1128 Ward 20080401 1143
  • Prop2 vs. 2 min post tq up
  • Revson 20071108 Base Phenyl 30 min
  • Go Exercise Ice 20090421 1102 and 1110
  • Redo with baseline
  • Revson 20071108 Base Phenyl 30 min
  • Skarda 20080509 1247 and 1306 Amplitude corrected
  • Go Exercise 20090415 1500 and 1537
  • Nolan 20080815 0920 and 0930
  • Osborn 20081203
  • Osborn 20081203
  • Engel 20071018 Baseline
  • Pulsecor Presentation

    1. 2. What is this? <ul><li>Simple accurate means of measuring arterial waveforms from a regular blood pressure cuff. </li></ul>
    2. 3. <ul><li>Analyzes components of the arterial pulse wave </li></ul>
    3. 4. Arterial Pulse Wave <ul><li>Result of 2 processes: </li></ul><ul><ul><li>Ejection wave from the heart (stroke volume) </li></ul></ul><ul><ul><li>Modification of wave as it is ejected into a somewhat non-compliant or stiff arterial system (impedence/vascular resistance) </li></ul></ul>
    4. 5. Analysis of the Vascular Wave <ul><li>In theory, can provide information </li></ul><ul><ul><li>Cardiac function </li></ul></ul><ul><ul><li>State of the arterial system </li></ul></ul>
    5. 6. <ul><li>The analysis is complex and interrelated and the term “ventriculo-vascular coupling” has been introduced to describe this relationship. </li></ul>
    6. 7. How is it recorded? <ul><li>Use a regular blood pressure cuff around the arm </li></ul><ul><li>Sensor system in the box </li></ul><ul><li>Analyze the oscillometric signal </li></ul><ul><ul><li>Therefore, cuff position does not matter </li></ul></ul>
    7. 8. Sequence <ul><li>Record blood pressure normally </li></ul><ul><li>Cuff deflates for ≈ 5 secs </li></ul><ul><li>Cuff is reinflated to 30 mmHg above systole (suprasystolic) </li></ul><ul><li>Held for 12 secs (2 respiratory cycles) </li></ul><ul><li>Cuff deflates </li></ul>
    8. 9. <ul><li>Recording of suprasystolic signals is analyzed </li></ul><ul><li>Means of multiple variables </li></ul>
    9. 11. Features of Suprasystolic Recording <ul><li>Subaudible signals (<20 Hertz) </li></ul><ul><ul><li>95% of energy of pulse wave is <1 Hertz </li></ul></ul><ul><li>Reproducible at 20-30 mmHg above systolic pressure </li></ul>
    10. 12. Benefits Over Intra-arterial Measurements <ul><li>Not influenced by dampening secondary to air or thrombus in arterial line </li></ul><ul><li>Not influenced by kinking of catheter </li></ul><ul><li>Stable, reproducible signals </li></ul><ul><li>Non-invasive, sterility issues, etc. </li></ul><ul><li>No technical skill required </li></ul>
    11. 13. Benefits over Tonometry at the Wrist (AtCor – Omron) <ul><li>More proximal signals (axillary vs. radial artery) </li></ul><ul><li>Less technician dependent </li></ul><ul><li>Single measurement (Tonometry measures BP separately) </li></ul><ul><li>Quicker and more simple </li></ul>
    12. 14. <ul><li>What can you measure? </li></ul><ul><li>What do the waves mean? </li></ul>
    13. 15. Physiology Distal aorta Exit of heart Direct Reflected
    14. 16. Pulse Wave <ul><li>Incident wave </li></ul><ul><li>Reflection wave </li></ul>
    15. 17. Wave Reflections
    16. 18. Intra-arterial Tracing Incident wave Aortic reflection wave Late reflection wave Dicrotic notch
    17. 19. Concurrent Signals Intra-arterial tracing Pulsecor suprasystolic waveform
    18. 20. RWR (reflection wave ratio) = da/ab x 100 RWR = Reflection Wave Ratio (da/ab x 100) PS1 = Suprasystolic pressure wave amplitude dp/dt = Contractility (Peak change in slope of PS1) RWTT = Reflected Wave Transit Time (a-c) SEP = Systolic Ejection Period (a-e) PS1 RWTT a b c d e ab da SEP dp/dt
    19. 21. What can waves tell you or be used for? <ul><li>Vascular screening </li></ul><ul><li>Monitoring long term medical therapy, e.g., antihypertensive </li></ul><ul><li>Monitoring acute physiological changes in critical care environment </li></ul>
    20. 22. Vascular Screening <ul><li>RWR increases with </li></ul><ul><ul><li>Age </li></ul></ul><ul><ul><li>Hypertension </li></ul></ul><ul><ul><li>Vascular stiffness </li></ul></ul>RWR = 17% RWR = 65% RWR = 325%
    21. 23. Baseline Reflection Wave Ratio vs. Age (n=200 hips) R = 0.491 -1 0 1 2 3 4 5 6 7 8 9 30 40 50 60 70 80 90 RWR > 400% are over 70 years of age Age
    22. 24. Baseline RWTT* vs. Age (n=200 hips) *surrogate of pulse wave velocity Age .08 .1 .12 .14 .16 .18 .2 .22 .24 .26 .28 .3 30 40 50 60 70 80 90 R = 0.495
    23. 25. Arterial Stiffness vs. Brachial Blood Pressure <ul><li>Stronger predictor of cardiovascular disease and better guide to treatment </li></ul><ul><li>Stronger than other cardiovascular risk factors </li></ul>Major Clinical Study Outcome CAFE STUDY (Part of the Pfizer-sponsored ASCOT study) - measured more than 2000 patients in the UK and Scandinavia, 2001-2006 Central blood pressure measurement showed big differences using two different drug regimens, clearly explaining different patient outcomes where brachial pressures showed no difference USA NATIONAL INSTITUTE OF HEALTH’s STRONG HEART Study – measured more than 2400 patients for an average 4 years Showed central pressures were strong predictors of cardiovascular outcomes, while brachial pressures were less predictive REASON – Q: Does central pressure augmentation predict CV outcomes in renal failure patients? Pressure augmentation was independently predictive of outcomes ROTTERDAM - Q: Is arterial stiffness associated with risk of coronary heart disease and stroke? Showed arterial stiffness is an independent predictor of coronary heart disease and stroke in asymptomatic individuals
    24. 26. Response to Medical Treatment: Effect of Stopping Losartan 50 mg/day <ul><li>BP = 112/68 (80) mmHg </li></ul><ul><li>RWR = 33% </li></ul><ul><li>dp/dt = 10 mmHg/sec </li></ul><ul><li>PS1 = 0.6 mmHg </li></ul><ul><li>BP = 144/85 (101) mmHg </li></ul><ul><li>RWR = 125% </li></ul><ul><li>dp/dt = 15 mmHg/sec </li></ul><ul><li>PS1 = 0.98 mmHg </li></ul>Day 5 after stopping Losartan On Losartan
    25. 27. CAFE Study <ul><li>Williams et al: Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113: 1213-25 </li></ul>
    26. 28. Monitoring Acute Physiological Changes
    27. 29. Total Hip Replacement <ul><li>200 patients on operating table </li></ul><ul><li>Supine and awake prior to sedation </li></ul><ul><li>Non-selected </li></ul><ul><ul><li>Many treated with ACE inhibitors etc. </li></ul></ul>
    28. 30. Total Knee Replacement <ul><li>44 patients </li></ul><ul><li>Randomized to ephedrine versus phenylephrine under extensive epidural anesthesia </li></ul>
    29. 31. Pulsecor Changes Fluid Cardiac Stimulation Ephedrine (inotropic agent) Cardiac Depression Phenyl + Extensive epidural anesthesia Vasoconstrictor Phenylephrine Vasodilator Propofol
    30. 32. Effect of Propofol <ul><li>Sedative/anesthetic agent </li></ul><ul><li>Known arterial dilator </li></ul><ul><li>Mild cardiac depression </li></ul>
    31. 33. Effect of Propofol (n=200) 0.498 ± .24 8.2 ± 3.8 0.19 ± .03 70 ± 50 45 ± 8 80 ± 12 Propofol 0.0007 0.541 ± .27 PS1 <0.0001 9.4 ± 4.4 dp/dt <0.0001 0.16 ± .03 RWTT <0.0001 130 ± 110 RWR (%) <0.0001 60 ± 12 Pulse Pressure <0.0001 100 ± 11 MAP P Value Baseline
    32. 34. Effect of Propofol (vasodilator) <ul><li>BP = 136/84 (99) mmHg </li></ul><ul><li>HR = 79 bpm </li></ul><ul><li>RWR = 111% </li></ul><ul><li>dp/dt = 5.63 mmHg/sec </li></ul><ul><li>PS1 = 0.31 mmHg </li></ul><ul><li>BP = 113/66 (78) mmHg </li></ul><ul><li>HR = 80 bpm </li></ul><ul><li>RWR = 59.5% </li></ul><ul><li>dp/dt = 5.91 mmHg/sec </li></ul><ul><li>PS1 = 0.34 mmHg </li></ul>
    33. 35. Effect of Intravenous Phenylephrine <ul><li>Vasoconstriction </li></ul>
    34. 36. Vasoconstriction (TKR; n=22) *EA = Epidural anesthesia =0.0378 0.178 ± .03 0.193 ± .02 RWTT <0.0001 149 ± 69 56 ± 30 RWR <0.0001 59 ± 9 77 ± 10 HR <0.0001 84 ± 8 76 ± 8 MAP P Value EA* + Phenyl Propofol
    35. 37. Effect of Phenylephrine (vasoconstrictor) <ul><li>BP = 115/70 (82) mmHg </li></ul><ul><li>HR = 76 bpm </li></ul><ul><li>RWR = 42% </li></ul><ul><li>BP = 117/71 (84) mmHg </li></ul><ul><li>HR = 63 bpm </li></ul><ul><li>RWR = 212% </li></ul>
    36. 38. Hand in Ice <ul><li>BP = 122/64 (81) mmHg </li></ul><ul><li>HR = 61 bpm </li></ul><ul><li>RWR = 40.7% </li></ul><ul><li>dp/dt = 17.6 mmHg/sec </li></ul><ul><li>PS1 = 1.05 mmHg </li></ul><ul><li>BP = 152/88 (103) mmHg </li></ul><ul><li>HR = 75 bpm </li></ul><ul><li>RWR = 74.7% </li></ul><ul><li>dp/dt = 19.96 mmHg/sec </li></ul><ul><li>PS1 = 1.2 mmHg </li></ul>
    37. 39. Cardiac Depression (Clinical model) <ul><li>Extensive epidural  autonomic blockade of the heart </li></ul><ul><li>Vasoconstriction  no cardiac stimulation </li></ul>
    38. 40. Cardiac Depression (TKR; n=22) *EA = Epidural anesthesia <0.0001 0.35 ± 0.14 0.52 ± 0.17 PS1 <0.0001 5.4 ± 2 8.6 ± 2.7 dp/dt <0.0001 60 ± 9 77 ± 10 HR NS 48 ± 8 46 ± 9 Pulse Pressure <0.0001 84 ± 8 76 ± 8 MAP P Value EA* + Phenyl Propofol
    39. 41. Effect of Phenylephrine + Extensive Epidural Anesthesia (Cardiac depression) <ul><li>BP = 115/70 (82) mmHg </li></ul><ul><li>HR = 76 bpm </li></ul><ul><li>RWR = 42% </li></ul><ul><li>PS1 = 0.58 mmHg </li></ul><ul><li>dp/dt = 11 mmHg/sec </li></ul><ul><li>BP = 117/71 (84) mmHg </li></ul><ul><li>HR = 63 bpm </li></ul><ul><li>RWR = 212% </li></ul><ul><li>PS1 = 0.23 mmHg </li></ul><ul><li>dp/dt = 3.62 mmHg/sec </li></ul>
    40. 42. Ephedrine <ul><li>Cardiac stimulant </li></ul>
    41. 43. Effect of Ephedrine (n=109) 0.62 ± .24 9.4 ± 3.8 0.228 ± .03 24.4 ± 20 46 ± 7.8 63 ± 10 Post Ephedrine <0.0001 0.43 ± .16 PS1 <0.0001 6.2 ± 2.4 dp/dt 0.0002 0.241 ± .03 RWTT 0.005 29.5 ± 18 RWR (%) <0.0001 38 ± 7.6 Pulse Pressure <0.0001 47 ± 7 MAP P Value Post Fluid
    42. 44. Effect of Ephedrine (cardiac stimulant / inotrope) <ul><li>BP = 68/30 (40) mmHg </li></ul><ul><li>HR = 57 bpm </li></ul><ul><li>RWR = 20% </li></ul><ul><li>dp/dt = 4.72 mmHg/sec </li></ul><ul><li>PS1 = 0.36 mmHg </li></ul><ul><li>BP = 94/45 (58) mmHg </li></ul><ul><li>HR = 64 bpm </li></ul><ul><li>RWR = 14% </li></ul><ul><li>dp/dt = 8.6 mmHg/sec </li></ul><ul><li>PS1 = 0.66 mmHg </li></ul>
    43. 45. Effect of Exercise (15 min stationary bike, HR ≈130 bpm) <ul><li>BP = 129/70 (87) mmHg </li></ul><ul><li>HR = 65 bpm </li></ul><ul><li>RWR = 44% </li></ul><ul><li>dp/dt = 11.75 mmHg/sec </li></ul><ul><li>PS1 = 0.66 mmHg </li></ul><ul><li>BP = 164/72 (97) mmHg </li></ul><ul><li>HR = 134 bpm </li></ul><ul><li>RWR = 6.2% </li></ul><ul><li>dp/dt = 24.6 mmHg/sec </li></ul><ul><li>PS1 = 1.01 mmHg </li></ul>
    44. 46. Effect of Low Dose Epinephrine <ul><li>Low dose  3 µg/min </li></ul><ul><li>Increase stroke volume </li></ul><ul><li>Decrease arterial tone </li></ul>
    45. 47. Effect of Low Dose Epinephrine <ul><li>BP = 91/56 (66) mmHg </li></ul><ul><li>HR = 57 bpm </li></ul><ul><li>RWR = 41% </li></ul><ul><li>dp/dt = 7.94 mmHg/sec </li></ul><ul><li>RWTT = 0.22 sec. </li></ul><ul><li>PS1 = 0.64 mmHg </li></ul>Epinephrine (3 µg/min) No Epinephrine <ul><li>BP = 109/73 (83) mmHg </li></ul><ul><li>HR = 49 bpm </li></ul><ul><li>RWR = 118% </li></ul><ul><li>dp/dt = 7.81 mmHg/sec </li></ul><ul><li>RWTT = 0.17 sec. </li></ul><ul><li>PS1 = 0.46 mmHg </li></ul>
    46. 48. Effect of Fluid (n=109) CVP increased 4 mmHg (mean) 0.431 ± .16 6.2 ± 2.4 0.241 ± .03 29 ± 18 38 ± 7.6 47 ± 7 Post Fluid <0.0001 0.344 ± .12 PS1 <0.0001 5.2 ± 2 dp/dt NS 0.242 ± .04 RWTT NS 31 ± 19 RWR (%) <0.0001 36 ± 7 Pulse Pressure <0.0001 43 ± 6 MAP P Value Pre Fluid
    47. 49. Effect of Snoring
    48. 50. Snoring dPP = 122%
    49. 51. Snoring Eliminated dPP = 59%
    50. 52. Atrial Fibrillation

    ×