Semantic Web - A Survey Talk

1,689 views

Published on

Survey talk given at University of Economics, Katowice May 24, 2012

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,689
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Semantic Web - A Survey Talk

  1. 1. WeST – Web Science & Technologies University of Koblenz Landau, GermanySemantic Web Steffen Staab
  2. 2. …a short history of the Web… <HTML> Phone book <HTML> Aalta CERN Researcher Interests… Aalta 234 789 <HTML> Phone 789 … Zyström Zyström 981 Colleague Tel 981 ~1989WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  3. 3. World Wide Web WWW := Hypertext & Internet & Social PhenomenonWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  4. 4. More than 1 Billion Users Later … Sir Tim Berners-LeeWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  5. 5. …the History of the Web continued… Phone <HTML> Book Aalta CERN Interests… <HTML> Aalta 789 Tel 789 Zyström … Zyström 981 Collegue Phone 981 ~1995WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  6. 6. …the Problem Inherent to Knowledge… <HTML> <HTML> ~1995WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  7. 7. …now you can read it more easily… <HTML> <HTML> What a computer understands!WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  8. 8. …the History of the Semantic Web… <HTML> <HTML> Researcher Forscher Aalta 789 <HTML> … Zyström 981 ~1995WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  9. 9. What do you need for this idea? <HTML> <HTML> 1. Language for Researcher Forscher (meta-)data Aalta 789 2. Language for <HTML> … describing Zyström 981 schema which (meta-)data adhere to3. Exchange of data and schemata via Internet 4. Lots of people and applications WeST – Web Science & Steffen Staab Technologies staab@uni-koblenz.de
  10. 10. Semantic Web 1. Language for (meta-)data 2. Language for Semantic Web := describing Semantic Web Data & schema which (meta-)data Ontologies & adhere to Internet &3. Exchange of data and schemata via Social Phenomenon Internet 4. Lots of people and applications WeST – Web Science & Steffen Staab Technologies staab@uni-koblenz.de
  11. 11. SEMANTIC WEB IN ACTIONWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  12. 12. Google for „Vincent van Gogh“ Screenshot by Kingsley IdehenWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  13. 13. Van Gogh on FacebookWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  14. 14. Facebook Data Object Screenshot by Kingsley IdehenWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  15. 15. Van Gogh on WikipediaWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  16. 16. DBPedia Data Object Screenshot by Kingsley Idehen Note: DBPedia harvests knowledge from WikipediaWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  17. 17. Freebase Data Object Screenshot by Kingsley Idehen Note: MetaWeb producing Freebase is a Semantic Web company bought by Google in 2010WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  18. 18. Google Search with Google Knowledge GraphWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  19. 19. APPLICATION: SCHEMA.ORGWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  20. 20. Google Rich SnippetsWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  21. 21. WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  22. 22. ContentWhat’s in the schema? Creative works: CreativeWork, Book, Movie, MusicRecording, Recipe, TVSeries ... Embedded non-text objects: AudioObject, ImageObject, VideoObject Event Organization Person Place, LocalBusiness, Restaurant ... Product, Offer, AggregateOffer Review, AggregateRating Annotating data within normal Web pagesWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  23. 23. Return on Investment BestBuy early adopter  Launched Semantic Product Web, augmented with GoodRelations and RDFa,  30% increase in traffic to their pages.  (not a scientifically precise experiment!) Nick Cox@Yahoo!  search results augmented with structured data get 15% higher click-through rate Cf http://www.chiefmartec.com/2009/12/best-buy-jump-starts-data-web- marketing.htmlWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  24. 24. APPLICATION: E-GOVERNMENTWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  25. 25. http://lisa.west.uni-koblenz.de/lisa-demo/Family‘s analysis of Munich LOD + Open Street Map data WeST – Web Science & Steffen Staab Technologies staab@uni-koblenz.de
  26. 26. http://lisa.west.uni-koblenz.de/lisa-demo/Entrepreneur‘s analysis of Munich LOD + Open Street Map data 1. Prize German Linked Open Gov Data Competition 2012 WeST – Web Science & Steffen Staab Technologies staab@uni-koblenz.de
  27. 27. APPLICATION: WEB 3.0WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  28. 28. Making Web 2.0 More Accessible GeoNames Links Location low- to xxxxx Persons xxxx midlevel features Knowledge TagsWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  29. 29. Choosing between Koblenz – and KoblenzWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  30. 30. Contextual InformationWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  31. 31. Tag-based refinementWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  32. 32. A tag view of „Koblenz“ & „Castle“WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  33. 33. Semantic Identity – Festung EhrenbreitsteinWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  34. 34. Persons – Celebrities, FOAFers & Flickr Users Billion Triples Challenge 1. Prize 2008WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  35. 35. APPLICATION: E-SCIENCEWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  36. 36. >1000 Life Science DBs, number growing quicklyWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  37. 37. Querying Biochemical Web Sites Rich Site StructureWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  38. 38. APPLICATION: BUSINESSWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  39. 39. Organizational knowledge work ? How to integrated? Individual knowledge workWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  40. 40. Integration of organizational & individual knowledge work Scenario: SME architecture office German KM 1. Prize 2011 WeST – Web Science & Steffen Staab Technologies staab@uni-koblenz.de
  41. 41. RESEARCH CHALLENGESWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  42. 42. Developing methods… Identity Provenance  Origin  Trust Search  Intelligent Search  Ranking BTC 1. Prize 2011 Scalability  Cloud  Querying  DistributionWeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de
  43. 43. THANK YOU!WeST – Web Science & Steffen StaabTechnologies staab@uni-koblenz.de

×