Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Exercice corrigés e p

5,526 views

Published on

Published in: Engineering

Exercice corrigés e p

  1. 1. Office National Des Aéroports Académie Internationale Mohamed VI de l’Aviation Civile Office National Des Aéroports Académie Internationale Mohamed VI de l’Aviation Civile
  2. 2. Électronique de puissance – Exercices © M. ZEGRARI
  3. 3. Électronique de puissance – Exercices © M. ZEGRARI ! " # $ % &'( )* + ) $ $ $ ! " # $ " " % & $ " "& # $ " "" ' " ( " )" $ Charge inductiveicc vs L vcc R is Vm π 3π2π vcc 0 ωt π 2π 3π ωt icc *0 RedresseurSource CA Vm π 3π2π v1 0 ωt Vm π 3π2π v2 0 ωt Vm π 3π2π v3 0 ωt i1 0 T/2 *0 T t +*0 3T/2 i2 0 T/2 *0 T t +*0 3T/2 i3 0 T/2 *0 T t 3T/2td td td
  4. 4. Électronique de puissance – Exercices © M. ZEGRARI , " # % - * $ ! " "# &, # $ - . / Ω % . 0 1 , /2 / 3 + 4/ 15 % # $ "" &" 6 ( ( 7 7 " $ ! " "# & , # & - . / Ω , /2 / 3 + 4/ 15 %8 $ 9 $ # :&,α .;/< 6 8 6 6 7 7 # $ " " 7 "& # $ T1 220/220 V vp ip Charge R = 20 Ω iT1 T 220 V 50 Hz is icc vcc vT1 vs T2 T3 T4 D1 220/220 V vp ip Charge très inductive L = 2.8 H T 220 V 50 Hz is icc vccvs D2 D3 D4 R = 110 Ω vD1 iD1
  5. 5. Électronique de puissance – Exercices © M. ZEGRARI . = % . 0 1 & & - • 6 • 7 7 • " $ ! ! "# & & & /2 0/ 3 + 4/ 15 " "# &, # " &, # $ % ./ > 1 - . / Ω %8 $ 9 $ # :&,α . /< 6 7 7 (& $ 9 $ α " 4 = , ! " $ "# & # $ & - . / Ω α .?/< 7 7 - " & "" 7 2 7 α " "& # $ $ α % . / 1 & & - ( α $ 9 $ " $ is iac vac vsvs T1 220 V 50 Hz R = 110 ΩT2 T1vAN ia Charge inductive R = 220 Ωic A 220/380 V 50 Hz ib icc vcc T2 T3 vBN vCN T4 T5 T6 L = 0.7 H B C N T1 220/220 V vp ip Charge très inductive L = 1.8 H iT1 T 220 V 50 Hz is icc vcc vT1 vs T2 T3 T4 R = 20 Ω
  6. 6. Électronique de puissance – Exercices © M. ZEGRARI / " # ! %0 # - ) & ! $ ! # # & & " & - . Ω 3- . 3 , " : 3 . @0 3 % " # # & & " *AB6 "" & " % &$& , & . C15 "" α 6 " 6 ( % % 6 ( % (& % % /D (& D ! ! # # & " & - " 3- . // 3 " " - . 4// E % # # &" 3 . / 3 % *AB6 "" & " % & # # $ . / C15 "" α 6 % % % % (& % % /D (& / 4D 6 6 ( 6 ( (& & & " Source continue VCC = 120 V iT vL L iL CvC R ChargeiRiD iC D T vR = 300 V PR = 1.5 kW icc Source continue VCC = 48 V iD vL L iT CvC R = 2 Ω ChargeiRiL iC D T vR = 12 V icc vFvD vT
  7. 7. Électronique de puissance – Exercices © M. ZEGRARI 1 ! ! % , : & $ % " F F & "& 6 & + " / G G6 2 F & F + " 6 2 G G6 F F & 6 # # " # $ (& " "& & - ! , ! "# & " &" " % . @ 1 , " 3 .@0 3 % 9 $ " & &" & & . C15 ( :" "& 6 6 7 & ," & & & (& " & $ " 7 .@/ 3 : % Vcc = 48 V icc T1 T3 T4 T2 L = 2.4 mH iac vac D1 D3 D4 D2 K2 K1 i2 i1 ich vch R = 50 Ω E1 = 40 V E2 = 40 V
  8. 8. Électronique de puissance – Exercices © M. ZEGRARI 2 3' & # $ &'( )* + ) $ $ 3 • 6 " $ "# & " " &$ "" & ( ) [ ] π =θ− π =θθ π = π π ( ) ( )==θ θ− π =θθ π = ππ • 6 " $ "# & " &$ & ( ) [ ] π =θ− π =θθ π = π π ( ) ( )==θ θ− π =θθ π = ππ • 6 " $ "# & " H " I" J ( ) [ ] π =θ− π =θθ π = π π π π ( ) π π π π θ θ− π =θθ π = Vm π 3π2π v1 0 ωt Vm π 3π2π v2 0 ωt Vm π 3π2π v3 0 ωt π/6 5π/6
  9. 9. Électronique de puissance – Exercices © M. ZEGRARI 4 3 • " $ , & & # $ & " % "& ( ) =−+= ( ) ( )=== • " $ , & & & # $ & " % "& ( ) =−+= + ( ) ( ) −=−== • " $ , & & # $ " % "& ( ) =+−−+−= ( ) ( )==−= $ ! " # $ "& ( ) ( )[ ] ( ) π =×=×= "" ( ) ( )=×= ) " $ π = π == Vm π 3π2π vcc 0 ωt *0 π 2π 3π ωt icc i1 0 T/2 *0 T t +*0 3T/2 i2 0 T/2 *0 T t +*0 3T/2 i3 0 T/2 *0 T t 3T/2td td td +*0
  10. 10. Électronique de puissance – Exercices © M. ZEGRARI $5 3' & # - * $ ! " "# &, # $ - . / Ω % . 0 1 - " & 6 ( ) = π ×× = π = ( ) ( ) === " "& =×= π = "" ( ) ( ) =×=×= ) " === ! " "# &, # & - . / Ω - " & 6 ( ) ( ) ( ) =°+ π =α+ π = ( ) ( ) !=== "& & - ( ) ( ) ( ) != π + π − π π× × = α + α − π π = % $ " % . 0 1 & - • ) • 6 ( ) =° π × =α π = • ( ) ( ) === • ) " =°× π =α π =
  11. 11. Électronique de puissance – Exercices © M. ZEGRARI $$ ! ! " "# & ( # &" "# & /2 0/ 3 - " & 6 ( ) =° π × =α π = ( ) ( ) === & : , 4 = °=α= × ××π = × ×π =α=α π " , ! " $ "# & # $ & - . / Ω 6 ( ) ( ) # == π α+α−π = ( ) ( )# # === 3 " "" , α 6 ( ) ( ) ( ) =π=α =π=α ==α π α+α−π == !# # $ ( )# === % ./ 1 & & - = $ 9 $ ( ) °= π× = ω ==α !#$ % & #$ %'#$%
  12. 12. Électronique de puissance – Exercices © M. ZEGRARI $ 3' & # ! 0 # - ) & ! $ ! # # & &" & - . Ω K 3- . 3 3 .@0 3 "" ===α & # # $ ( ) (!)(( =α−==α== - " & 3 % ( ) ( )& ==== ( ) ( )&& =×=×=∆ ( ) ( )& & =−= ∆ −= ( ) ( )& &#* =+= ∆ += * $ +!& & =×× − = ∆ − = − " & $ ( ) ( ) ( ) ( ) (, !& - = ××× ××− = ∆ α− = − − ! ! # # & - . 4// E " 3- . // 3 % # # &, 3 . / 3 ) & # # $ . / C15 "" =−=−=α & # # $ ( ) ()(( =α−==α=== - " & 3 % ( )& === ( ) ( )&& =×=×=∆ ( ) ( )& & =−= ∆ −= ( ) ( ) !& &#* =+= ∆ += * $ +& & =××= ∆ = −
  13. 13. Électronique de puissance – Exercices © M. ZEGRARI $! - α = ∆ -& # $ Ω=== " & $ ( ) (,- = ×× ×× = ∆ α = − − & " 367 : . // 3 K 3( 7 : .+ // 3 ! ! % , : & $ ) 3 # $ ( ) ../ === ( ) ( )/ / === "& ( )// =×== ! , ! "# & " 3 .@0 3 K % . @ 1 K . C15 L:" # $ - "" =α K & (( ===== ) 7 % $ % $ 7 , : 3 : & = ×× ×× == − − 3 ( )# === & & & " 7 .@/ 3 ( ) ( ) (!# # =− × =−=−= − vch 0 t ich 0.8 A T/2 -40 V 40 V -0.8 A T/2

×