
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Autonomous and ecient action of robots requires a robust robot vision system that can
cope with variable light and view conditions. These include partial occlusion, blur, and
mainly a large scale dierence of object size due to variable distance to the objects. This
change in scale leads to reduced resolution for objects seen from a distance. One of the
most important tasks for the robot's visual system is object recognition. This task is also
aected by orientation and background changes. These realworld conditions require a
development of specic object recognition methods.
This work is devoted to robotic object recognition. We develop recognition methods
based on training that includes incorporation of prior knowledge about the problem.
The prior knowledge is incorporated via learning constraints during training (parameter
estimation). A signicant part of the work is devoted to the study of reconstruction
constraints. In general, there is a tradeo between the priorknowledge constraints and
the constraints emerging from the classication or regression task at hand. In order to
avoid the additional estimation of the optimal tradeo between these two constraints, we
consider this tradeo as a hyper parameter (under Bayesian framework) and integrate
over a certain (discrete) distribution. We also study various constraints resulting from
information theory considerations.
Experimental results on two face datasets are presented. Signicant improvement in
face recognition is achieved for various image degradations such as, various forms of image
blur, partial occlusion, and noise. Additional improvement in recognition performance is
achieved when preprocessing the degraded images via state of the art image restoration
techniques.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment