SlideShare a Scribd company logo

双方向LSTMによるラウドネス及びMFCCからの振幅スペクトログラム予測と評価

川口翔也, 北村大地, "双方向LSTMによるラウドネス及びMFCCからの振幅スペクトログラム予測と評価," 日本音響学会 2022年秋季研究発表会講演論文集, 1-1-16, pp. 1471–1474, 北海道, 2022年9月(査読無).

1 of 19
Download to read offline
双方向LSTMによるラウドネス及びMFCCからの
振幅スペクトログラム予測
☆川口翔也(北村研究室),
北村大地(香川高専)
日本音響学会2022年秋季研究発表
2022年9月14日
Amplitude spectrogram prediction and evaluation from
MFCC and loudness using bidirectional LSTM.
1-1-16
2
研究背景
• 深層学習(deep neural network: DNN)を用いた音色の変換
及び音の生成技術の発達
–Differentiable Digital Signal Processing(DDSP) [Engel+, 2020]
–変分自己符号化器を用いた楽器音の解析や生成 [Luo+, 2019]
• 変分自己符号化器(variational auto-encoder: VAE)[Kingma+, 2013]
を用いた音色の変換及び音の生成
–ピアノとギターの中間の音色
–新しい楽器音
ピアノ ギター
変換
ピアノの情報 ピアノ
生成
・音の高さ
・音量
・音色
…etc
3
変分自己符号化器(VAE)
• 教師なし学習の1種
• 潜在変数から確率分布を求め,潜在空間に表示
0~9の画像の違いを表す潜在空間
4
提案音生成システムの概要
• VAEを用いて楽器の音色の特徴を抽出・生成
–音波形から「音の高さ」・「音色」・「音量」を抽出
–音色をVAEに入力
• 提案音生成システムにおける問題
–MFCCから振幅スペクトログラムを予測する線形デコーダがない
5
本論文の主題
• DNNを用いた振幅スペクトログラムの予測
–入力:
• 音の高さ(ピッチ): C3~B5の3オクターブの内1音
• 音色(MFCC): 楽器音の特徴量を示す
• 音量(ラウドネス): 時間フレーム毎の音の大きさ(振幅値)
–出力:振幅スペクトログラム
6
入力特徴量
• メル周波数ケプストラム係数(mel-frequency cepstral coefficient: MFCC)
–音の高さと音量を可能な限り除去した純粋な音色の特徴量
• ラウドネス
–振幅スペクトログラムの時間ごとの振幅の総和
MFCC
振幅スペクトログラム
振幅スペクトログラム ラウドネス
Time [s]
Frequency
[kHz]
Time [s]
Coefficient
Time [s] Time [s]
Frequency
[kHz]
Volume

Recommended

論文紹介 wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition論文紹介  wav2vec: Unsupervised Pre-training for Speech Recognition
論文紹介 wav2vec: Unsupervised Pre-training for Speech RecognitionYosukeKashiwagi1
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
研究発表のためのプレゼンテーション技術
研究発表のためのプレゼンテーション技術研究発表のためのプレゼンテーション技術
研究発表のためのプレゼンテーション技術Shinnosuke Takamichi
 
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech Synthesis
[DL輪読会]Parallel WaveNet: Fast High-Fidelity Speech SynthesisDeep Learning JP
 
音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組み音声感情認識の分野動向と実用化に向けたNTTの取り組み
音声感情認識の分野動向と実用化に向けたNTTの取り組みAtsushi_Ando
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019Yusuke Uchida
 
深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術深層生成モデルに基づく音声合成技術
深層生成モデルに基づく音声合成技術NU_I_TODALAB
 

More Related Content

What's hot

Neural text-to-speech and voice conversion
Neural text-to-speech and voice conversionNeural text-to-speech and voice conversion
Neural text-to-speech and voice conversionYuki Saito
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...Deep Learning JP
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoderSho Tatsuno
 
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案Onoma-to-wave: オノマトペを利用した環境音合成手法の提案
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案Keisuke Imoto
 
深層学習を利用した音声強調
深層学習を利用した音声強調深層学習を利用した音声強調
深層学習を利用した音声強調Yuma Koizumi
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろうShinnosuke Takamichi
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion ModelsDeep Learning JP
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
 
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3Naoya Takahashi
 
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスJ-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスShinnosuke Takamichi
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...Deep Learning JP
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -tmtm otm
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamformingShinnosuke Takamichi
 
信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離NU_I_TODALAB
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するTakahiro Kubo
 

What's hot (20)

Neural text-to-speech and voice conversion
Neural text-to-speech and voice conversionNeural text-to-speech and voice conversion
Neural text-to-speech and voice conversion
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...[DL輪読会]Diffusion-based Voice Conversion with Fast  Maximum Likelihood Samplin...
[DL輪読会]Diffusion-based Voice Conversion with Fast Maximum Likelihood Samplin...
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案Onoma-to-wave: オノマトペを利用した環境音合成手法の提案
Onoma-to-wave: オノマトペを利用した環境音合成手法の提案
 
深層学習を利用した音声強調
深層学習を利用した音声強調深層学習を利用した音声強調
深層学習を利用した音声強調
 
音声合成のコーパスをつくろう
音声合成のコーパスをつくろう音声合成のコーパスをつくろう
音声合成のコーパスをつくろう
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
 
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
音源分離 ~DNN音源分離の基礎から最新技術まで~ Tokyo bishbash #3
 
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパスJ-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
J-KAC:日本語オーディオブック・紙芝居朗読音声コーパス
 
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
[DL輪読会]BERT: Pre-training of Deep Bidirectional Transformers for Language Und...
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -深層学習の不確実性 - Uncertainty in Deep Neural Networks -
深層学習の不確実性 - Uncertainty in Deep Neural Networks -
 
論文紹介 Unsupervised training of neural mask-based beamforming
論文紹介 Unsupervised training of neural  mask-based beamforming論文紹介 Unsupervised training of neural  mask-based beamforming
論文紹介 Unsupervised training of neural mask-based beamforming
 
信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離信号の独立性に基づく多チャンネル音源分離
信号の独立性に基づく多チャンネル音源分離
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
モデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留するモデルではなく、データセットを蒸留する
モデルではなく、データセットを蒸留する
 

More from Kitamura Laboratory

付け爪センサによる生体信号を用いた深層学習に基づく心拍推定
付け爪センサによる生体信号を用いた深層学習に基づく心拍推定付け爪センサによる生体信号を用いた深層学習に基づく心拍推定
付け爪センサによる生体信号を用いた深層学習に基づく心拍推定Kitamura Laboratory
 
STEM教育を目的とした動画像処理による二重振り子の軌跡推定
STEM教育を目的とした動画像処理による二重振り子の軌跡推定STEM教育を目的とした動画像処理による二重振り子の軌跡推定
STEM教育を目的とした動画像処理による二重振り子の軌跡推定Kitamura Laboratory
 
ギタータブ譜からのギターリフ抽出アルゴリズム
ギタータブ譜からのギターリフ抽出アルゴリズムギタータブ譜からのギターリフ抽出アルゴリズム
ギタータブ譜からのギターリフ抽出アルゴリズムKitamura Laboratory
 
時間微分スペクトログラムに基づくブラインド音源分離
時間微分スペクトログラムに基づくブラインド音源分離時間微分スペクトログラムに基づくブラインド音源分離
時間微分スペクトログラムに基づくブラインド音源分離Kitamura Laboratory
 
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...Kitamura Laboratory
 
周波数双方向再帰に基づく深層パーミュテーション解決法
周波数双方向再帰に基づく深層パーミュテーション解決法周波数双方向再帰に基づく深層パーミュテーション解決法
周波数双方向再帰に基づく深層パーミュテーション解決法Kitamura Laboratory
 
Heart rate estimation of car driver using radar sensors and blind source sepa...
Heart rate estimation of car driver using radar sensors and blind source sepa...Heart rate estimation of car driver using radar sensors and blind source sepa...
Heart rate estimation of car driver using radar sensors and blind source sepa...Kitamura Laboratory
 
DNN-based frequency-domain permutation solver for multichannel audio source s...
DNN-based frequency-domain permutation solver for multichannel audio source s...DNN-based frequency-domain permutation solver for multichannel audio source s...
DNN-based frequency-domain permutation solver for multichannel audio source s...Kitamura Laboratory
 
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討Kitamura Laboratory
 
多重解像度時間周波数表現に基づく独立低ランク行列分析,
多重解像度時間周波数表現に基づく独立低ランク行列分析,多重解像度時間周波数表現に基づく独立低ランク行列分析,
多重解像度時間周波数表現に基づく独立低ランク行列分析,Kitamura Laboratory
 
深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討Kitamura Laboratory
 
深層学習に基づく音響特徴量からの振幅スペクトログラム予測
深層学習に基づく音響特徴量からの振幅スペクトログラム予測深層学習に基づく音響特徴量からの振幅スペクトログラム予測
深層学習に基づく音響特徴量からの振幅スペクトログラム予測Kitamura Laboratory
 
音楽信号処理における基本周波数推定を応用した心拍信号解析
音楽信号処理における基本周波数推定を応用した心拍信号解析音楽信号処理における基本周波数推定を応用した心拍信号解析
音楽信号処理における基本周波数推定を応用した心拍信号解析Kitamura Laboratory
 
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離Kitamura Laboratory
 
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離Kitamura Laboratory
 
Linear multichannel blind source separation based on time-frequency mask obta...
Linear multichannel blind source separation based on time-frequency mask obta...Linear multichannel blind source separation based on time-frequency mask obta...
Linear multichannel blind source separation based on time-frequency mask obta...Kitamura Laboratory
 
Prior distribution design for music bleeding-sound reduction based on nonnega...
Prior distribution design for music bleeding-sound reduction based on nonnega...Prior distribution design for music bleeding-sound reduction based on nonnega...
Prior distribution design for music bleeding-sound reduction based on nonnega...Kitamura Laboratory
 
Blind audio source separation based on time-frequency structure models
Blind audio source separation based on time-frequency structure modelsBlind audio source separation based on time-frequency structure models
Blind audio source separation based on time-frequency structure modelsKitamura Laboratory
 
非負値行列因子分解を用いた被り音の抑圧
非負値行列因子分解を用いた被り音の抑圧非負値行列因子分解を用いた被り音の抑圧
非負値行列因子分解を用いた被り音の抑圧Kitamura Laboratory
 
独立成分分析に基づく信号源分離精度の予測
独立成分分析に基づく信号源分離精度の予測独立成分分析に基づく信号源分離精度の予測
独立成分分析に基づく信号源分離精度の予測Kitamura Laboratory
 

More from Kitamura Laboratory (20)

付け爪センサによる生体信号を用いた深層学習に基づく心拍推定
付け爪センサによる生体信号を用いた深層学習に基づく心拍推定付け爪センサによる生体信号を用いた深層学習に基づく心拍推定
付け爪センサによる生体信号を用いた深層学習に基づく心拍推定
 
STEM教育を目的とした動画像処理による二重振り子の軌跡推定
STEM教育を目的とした動画像処理による二重振り子の軌跡推定STEM教育を目的とした動画像処理による二重振り子の軌跡推定
STEM教育を目的とした動画像処理による二重振り子の軌跡推定
 
ギタータブ譜からのギターリフ抽出アルゴリズム
ギタータブ譜からのギターリフ抽出アルゴリズムギタータブ譜からのギターリフ抽出アルゴリズム
ギタータブ譜からのギターリフ抽出アルゴリズム
 
時間微分スペクトログラムに基づくブラインド音源分離
時間微分スペクトログラムに基づくブラインド音源分離時間微分スペクトログラムに基づくブラインド音源分離
時間微分スペクトログラムに基づくブラインド音源分離
 
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...
Amplitude spectrogram prediction from mel-frequency cepstrum coefficients and...
 
周波数双方向再帰に基づく深層パーミュテーション解決法
周波数双方向再帰に基づく深層パーミュテーション解決法周波数双方向再帰に基づく深層パーミュテーション解決法
周波数双方向再帰に基づく深層パーミュテーション解決法
 
Heart rate estimation of car driver using radar sensors and blind source sepa...
Heart rate estimation of car driver using radar sensors and blind source sepa...Heart rate estimation of car driver using radar sensors and blind source sepa...
Heart rate estimation of car driver using radar sensors and blind source sepa...
 
DNN-based frequency-domain permutation solver for multichannel audio source s...
DNN-based frequency-domain permutation solver for multichannel audio source s...DNN-based frequency-domain permutation solver for multichannel audio source s...
DNN-based frequency-domain permutation solver for multichannel audio source s...
 
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討
深層ニューラルネットワークに基づくパーミュテーション解決法の基礎的検討
 
多重解像度時間周波数表現に基づく独立低ランク行列分析,
多重解像度時間周波数表現に基づく独立低ランク行列分析,多重解像度時間周波数表現に基づく独立低ランク行列分析,
多重解像度時間周波数表現に基づく独立低ランク行列分析,
 
深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討深層パーミュテーション解決法の基礎的検討
深層パーミュテーション解決法の基礎的検討
 
深層学習に基づく音響特徴量からの振幅スペクトログラム予測
深層学習に基づく音響特徴量からの振幅スペクトログラム予測深層学習に基づく音響特徴量からの振幅スペクトログラム予測
深層学習に基づく音響特徴量からの振幅スペクトログラム予測
 
音楽信号処理における基本周波数推定を応用した心拍信号解析
音楽信号処理における基本周波数推定を応用した心拍信号解析音楽信号処理における基本周波数推定を応用した心拍信号解析
音楽信号処理における基本周波数推定を応用した心拍信号解析
 
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離調波打撃音モデルに基づく線形多チャネルブラインド音源分離
調波打撃音モデルに基づく線形多チャネルブラインド音源分離
 
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
コサイン類似度罰則条件付き非負値行列因子分解に基づく音楽音源分離
 
Linear multichannel blind source separation based on time-frequency mask obta...
Linear multichannel blind source separation based on time-frequency mask obta...Linear multichannel blind source separation based on time-frequency mask obta...
Linear multichannel blind source separation based on time-frequency mask obta...
 
Prior distribution design for music bleeding-sound reduction based on nonnega...
Prior distribution design for music bleeding-sound reduction based on nonnega...Prior distribution design for music bleeding-sound reduction based on nonnega...
Prior distribution design for music bleeding-sound reduction based on nonnega...
 
Blind audio source separation based on time-frequency structure models
Blind audio source separation based on time-frequency structure modelsBlind audio source separation based on time-frequency structure models
Blind audio source separation based on time-frequency structure models
 
非負値行列因子分解を用いた被り音の抑圧
非負値行列因子分解を用いた被り音の抑圧非負値行列因子分解を用いた被り音の抑圧
非負値行列因子分解を用いた被り音の抑圧
 
独立成分分析に基づく信号源分離精度の予測
独立成分分析に基づく信号源分離精度の予測独立成分分析に基づく信号源分離精度の予測
独立成分分析に基づく信号源分離精度の予測
 

双方向LSTMによるラウドネス及びMFCCからの振幅スペクトログラム予測と評価