SlideShare a Scribd company logo
1 of 11
Download to read offline
アイデア賞

Student Cup 2019

ZoZei



RabontiKuma, charm,

masa10223, Kevinrobot34,



目次

● 概要

● モデル構成

● Preprocess and Feature Engineering

● Building Identification

● Internal Regression

● CatBoost

○ Feature Importance 

● Stratified Stacking

● Adaptive Stacking

概要

● 賃料予測をする上で、同一建物内の物件は、他の建物の数多くの物件情報よりも
有用であると考えられる。この同一建物内の物件の情報を適切に利用できるように
工夫した。



● 賃料が100万円を超えるような高額物件は類似物件の数が圧倒的に少なく、

予測が難しい。これらの予測精度があがるように最適なStacking方法を模索した。

モデル構成

raw

data

Preprocess

and

Feature Engineering

Building Identification

and

Internal Regression

CatBoost1





CatBoost2





CatBoost3

Stratified

Stacking

Adaptive 

Stacking

prediction

pseudo

labeling

Public LB 1位 (10817.55866) 

Private LB 1位 (11713.39842) 

Preprocess and Feature Engineering

以下のような前処理と特徴量の追加を行なった。

● 住所や間取り、最寄り駅、路線等の表記揺れの修正と名寄せ

○ 最寄り駅と徒歩分をエンコーディングする方法として三点測位の座標を採用 

● Google Map API を利用した物件の正確な緯度・経度情報の取得

● 公示地価情報の追加

● 最寄り駅の利用者数の情報の追加

● 区ポテンシャル

○ 各物件の各区からの距離の逆比 (e.g. 港区ポテンシャル) 

後のCatBoostの学習結果のスライドで見るように、これら特徴量の寄与は大きくスコア
向上につながった。

Building Identification

本コンペティションで用いられるデータは全て東京都区内の物件であり、

集合住宅が数多く存在している。そのためデータの中には同一条件の物件が

数多くあり、この情報は予測精度向上に利用できるはずである。そこで、我々は各物件
の情報から建物の特定・ID作成をし(Building Identification)、その建物内において回帰を
行う(Internal Regression)ことにした。

● 建物IDについて

住所情報の一部、建物構造、築年数、最上階数が一致する物件を同一建物とみな
し、これを建物IDとした

(例) : 東京都中野区弥生町2丁目、築40年10ヶ月の木造2階建物件

   → 弥生町2木造a408m20

Internal Regression


建物IDを作成したところで次に行うのは賃料予測である。以下の

フローチャートに従い、同一建物の物件情報利用した賃料予測を行った。



pseudo-labelとしてい一
部をCatBoostの訓練
データに利用

同じ建物IDの

物件があるか?

Yes

No

面積は近い?

ほぼ

同じ

遠い

CatBoost

同じ建物IDの

物件は一つ?

面積と賃料は

正の相関?

Yes

賃料再利用

階数で線形回帰

賃料を面積と階数で補正し再利用

線形回帰

近い

No

Yes

No

CatBoost

● 賃料を直接学習・予測するのではなく、単位面積当たりの賃料を用いるようにした。

○ 予測する変数を変えたので、目的関数としてRMSE以外にMAEやMAPEについても試した。 

○ MAEやMAPEの方がRMSEよりも学習は進む傾向にあり、最終的にMAE 



● CVストラテジーについて。

○ 建物ごとにsplitするGroupKFold(10-Fold)でCross Validationを行なった。 



● pseudo labelingによる訓練データの追加について。

○ BIIRによる賃料予測が正確だと考えられる物件に関しては、CatBoostの訓練データとして用いるこ
とにした。

○ これにより、訓練データを31,470件から46,290件にまで増やすことができた。 

CatBoost - Feature Importance

feature importance
港区ポテンシャル 

公示地価情報

緯度・経度情報

最寄駅利用者数 

右図はCatBoostの学習を行なった
際の各特徴量の重要度を表したグ
ラフである。



Feature Engineering で追加した特
徴量が重要になっていることが確
認できる。

Stratified Stacking

区ごとに物件の傾向は異なるので、これを掴むのは大事だと考えられる。これを実現す
るために、Stratified Stackingと呼んでいる以下のStackingを行なった

● 前スライドで説明したように、まず全データを用いてCatBoostを複数の条件で学習
させる。

○ この時点で区ごとにCatBoostを学習することも可能だが、学習データ数が減ってしまうためか学習
が上手くいかない。



● 学習させたCatBoostの出力結果を、区ごとに分けてRidge回帰するというStacking
を行う。

Adaptive Stacking

CatBoostによる賃料の予測値の上位の物件と、それ以外で面積が上位の物件につい
ては外れ値な物件であり、予測が困難であることが訓練データから示唆されていた。そ
こでAdaptive Stackingと命名した以下のStackingを行なった。

● 座標・築年数・面積などといった建物固有の特徴量をキーとして、上記の外れ値な
物件と類似した物件を探す。

● それらのみを訓練データとして、複数のCatBoostによる予測値といくつかの特徴量
を用いて線形回帰によるStackingを行う。

組み合わせる特徴量を適切に選ぶことで、外れ値な物件の賃料の予測精度が上がり、
スコアが向上した。


More Related Content

What's hot

(2021.3) 不均一系触媒研究のための機械学習と最適実験計画
(2021.3) 不均一系触媒研究のための機械学習と最適実験計画(2021.3) 不均一系触媒研究のための機械学習と最適実験計画
(2021.3) 不均一系触媒研究のための機械学習と最適実験計画Ichigaku Takigawa
 
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked AutoencodersDeep Learning JP
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選Yusuke Uchida
 
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...Deep Learning JP
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門tak9029
 
Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Chihiro Kusunoki
 
【DL輪読会】Responsive Safety in Reinforcement Learning by PID Lagrangian Methods...
【DL輪読会】Responsive Safety in Reinforcement Learning  by PID Lagrangian Methods...【DL輪読会】Responsive Safety in Reinforcement Learning  by PID Lagrangian Methods...
【DL輪読会】Responsive Safety in Reinforcement Learning by PID Lagrangian Methods...Deep Learning JP
 
Fisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight MapsFisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight MapsTakao Yamanaka
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions Deep Learning JP
 
文献紹介:EfficientDet: Scalable and Efficient Object Detection
文献紹介:EfficientDet: Scalable and Efficient Object Detection文献紹介:EfficientDet: Scalable and Efficient Object Detection
文献紹介:EfficientDet: Scalable and Efficient Object DetectionToru Tamaki
 
効果測定入門 Rによる傾向スコア解析
効果測定入門  Rによる傾向スコア解析効果測定入門  Rによる傾向スコア解析
効果測定入門 Rによる傾向スコア解析aa_aa_aa
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門hoxo_m
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)Deep Learning JP
 
Introduction to YOLO detection model
Introduction to YOLO detection modelIntroduction to YOLO detection model
Introduction to YOLO detection modelWEBFARMER. ltd.
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)Shota Imai
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システムjoisino
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめDeep Learning JP
 

What's hot (20)

(2021.3) 不均一系触媒研究のための機械学習と最適実験計画
(2021.3) 不均一系触媒研究のための機械学習と最適実験計画(2021.3) 不均一系触媒研究のための機械学習と最適実験計画
(2021.3) 不均一系触媒研究のための機械学習と最適実験計画
 
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
【DL輪読会】ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
 
モデル高速化百選
モデル高速化百選モデル高速化百選
モデル高速化百選
 
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...
【輪読会】Learning Continuous Image Representation with Local Implicit Image Funct...
 
深層学習とTensorFlow入門
深層学習とTensorFlow入門深層学習とTensorFlow入門
深層学習とTensorFlow入門
 
Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介Deep State Space Models for Time Series Forecasting の紹介
Deep State Space Models for Time Series Forecasting の紹介
 
【DL輪読会】Responsive Safety in Reinforcement Learning by PID Lagrangian Methods...
【DL輪読会】Responsive Safety in Reinforcement Learning  by PID Lagrangian Methods...【DL輪読会】Responsive Safety in Reinforcement Learning  by PID Lagrangian Methods...
【DL輪読会】Responsive Safety in Reinforcement Learning by PID Lagrangian Methods...
 
Fisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight MapsFisher線形判別分析とFisher Weight Maps
Fisher線形判別分析とFisher Weight Maps
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions
 
文献紹介:EfficientDet: Scalable and Efficient Object Detection
文献紹介:EfficientDet: Scalable and Efficient Object Detection文献紹介:EfficientDet: Scalable and Efficient Object Detection
文献紹介:EfficientDet: Scalable and Efficient Object Detection
 
効果測定入門 Rによる傾向スコア解析
効果測定入門  Rによる傾向スコア解析効果測定入門  Rによる傾向スコア解析
効果測定入門 Rによる傾向スコア解析
 
ResNetの仕組み
ResNetの仕組みResNetの仕組み
ResNetの仕組み
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings  (EMNLP 2021)
【DL輪読会】SimCSE: Simple Contrastive Learning of Sentence Embeddings (EMNLP 2021)
 
Introduction to YOLO detection model
Introduction to YOLO detection modelIntroduction to YOLO detection model
Introduction to YOLO detection model
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
強化学習エージェントの内発的動機付けによる探索とその応用(第4回 統計・機械学習若手シンポジウム 招待公演)
 
ユーザーサイド情報検索システム
ユーザーサイド情報検索システムユーザーサイド情報検索システム
ユーザーサイド情報検索システム
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ[DL輪読会]Dense Captioning分野のまとめ
[DL輪読会]Dense Captioning分野のまとめ
 

Similar to ZoZei - アイデア賞スライド

CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)MasanoriSuganuma
 
CNNの構造最適化手法について
CNNの構造最適化手法についてCNNの構造最適化手法について
CNNの構造最適化手法についてMasanoriSuganuma
 
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介Yoji Kiyota
 
GBDTを使ったfeature transformationの適用例
GBDTを使ったfeature transformationの適用例GBDTを使ったfeature transformationの適用例
GBDTを使ったfeature transformationの適用例Takanori Nakai
 
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)NTT DATA Technology & Innovation
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...MasanoriSuganuma
 
Big data解析ビジネス
Big data解析ビジネスBig data解析ビジネス
Big data解析ビジネスMie Mori
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...MasanoriSuganuma
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演Preferred Networks
 
CVPR2019 survey Domain Adaptation on Semantic Segmentation
CVPR2019 survey Domain Adaptation on Semantic SegmentationCVPR2019 survey Domain Adaptation on Semantic Segmentation
CVPR2019 survey Domain Adaptation on Semantic SegmentationYamato OKAMOTO
 
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜griddb
 
How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)Yasuyuki Kataoka
 
LightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeLightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeYusuke Kaneko
 
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~NISSHO USA
 
Hivemallで始める不動産価格推定サービス
Hivemallで始める不動産価格推定サービスHivemallで始める不動産価格推定サービス
Hivemallで始める不動産価格推定サービスKentaro Yoshida
 
Towards Knowledge-Based Personalized Product Description Generation in E-comm...
Towards Knowledge-Based Personalized Product Description Generation in E-comm...Towards Knowledge-Based Personalized Product Description Generation in E-comm...
Towards Knowledge-Based Personalized Product Description Generation in E-comm...harmonylab
 
[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a MapDeep Learning JP
 
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]Hideo Takagi
 

Similar to ZoZei - アイデア賞スライド (20)

CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)
 
CNNの構造最適化手法について
CNNの構造最適化手法についてCNNの構造最適化手法について
CNNの構造最適化手法について
 
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介
不動産物件データセットを用いた研究開発事例と、大学との共同研究の取り組みの紹介
 
GBDTを使ったfeature transformationの適用例
GBDTを使ったfeature transformationの適用例GBDTを使ったfeature transformationの適用例
GBDTを使ったfeature transformationの適用例
 
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)
Databricksチューニングあれこれ(JEDAI 2023 X‘mas/忘年会 Meetup! LT登壇資料)
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
 
Big data解析ビジネス
Big data解析ビジネスBig data解析ビジネス
Big data解析ビジネス
 
JAWS DAYS 2022
JAWS DAYS 2022JAWS DAYS 2022
JAWS DAYS 2022
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
CVPR2019 survey Domain Adaptation on Semantic Segmentation
CVPR2019 survey Domain Adaptation on Semantic SegmentationCVPR2019 survey Domain Adaptation on Semantic Segmentation
CVPR2019 survey Domain Adaptation on Semantic Segmentation
 
pg_bigmを用いた全文検索のしくみ(前編)
pg_bigmを用いた全文検索のしくみ(前編)pg_bigmを用いた全文検索のしくみ(前編)
pg_bigmを用いた全文検索のしくみ(前編)
 
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜
オープンソースのIoT向けスケールアウト型データベース GridDB 〜性能ベンチマーク結果とOSSを利用したビッグデータ分析環境〜
 
How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)How to organize data science project (データサイエンスプロジェクトの始め方101)
How to organize data science project (データサイエンスプロジェクトの始め方101)
 
LightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision treeLightGBM: a highly efficient gradient boosting decision tree
LightGBM: a highly efficient gradient boosting decision tree
 
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~
【日商USA】Webinar 2023.12.13 AWS re:Invent ハイライト ~データ活用の最先端を垣間見る~
 
Hivemallで始める不動産価格推定サービス
Hivemallで始める不動産価格推定サービスHivemallで始める不動産価格推定サービス
Hivemallで始める不動産価格推定サービス
 
Towards Knowledge-Based Personalized Product Description Generation in E-comm...
Towards Knowledge-Based Personalized Product Description Generation in E-comm...Towards Knowledge-Based Personalized Product Description Generation in E-comm...
Towards Knowledge-Based Personalized Product Description Generation in E-comm...
 
[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map[DL輪読会]Learning to Navigate in Cities Without a Map
[DL輪読会]Learning to Navigate in Cities Without a Map
 
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
【ウェブ セミナー】AI / アナリティクスを支えるビッグデータ基盤 Azure Data Lake [概要編]
 

ZoZei - アイデア賞スライド