Successfully reported this slideshow.
Your SlideShare is downloading. ×

EMNLP 2019 parallel iterative edit models for local sequence transduction

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 21 Ad

More Related Content

Similar to EMNLP 2019 parallel iterative edit models for local sequence transduction (17)

Advertisement

More from 広樹 本間 (15)

Recently uploaded (20)

Advertisement

EMNLP 2019 parallel iterative edit models for local sequence transduction

  1. 1. マスター タイトルの書式設定 1 Parallel Iterative Edit Models for Local Sequence Transduction A b h i j e e t A w a s t h i , S u n i t a S a r a w a g i , R a s n a G o ya l , S a b ya s a c h i G h o s h , V i h a r i P i r a t l a I n t r o d u c e r : H i r o k i H o m m a , i n K o m a c h i ’s l a b . J a n u a r y 2 7 t h , 2 0 2 0
  2. 2. マスター タイトルの書式設定 2 Abstract 概 要 2
  3. 3. マスター タイトルの書式設定 3 • They present a Parallel Iterative Edit (PIE) model for the problem of local sequence transduction arising in tasks like Grammatical error correction (GEC). • not encoder-decoder (ED) model • It achieves accuracy competitive with the ED model for four reasons: 1. predicting edits instead of tokens 2. labeling sequences instead of generating sequences 3. iteratively refining predictions to capture dependencies 4. factorizing logits over edits and their token argument to harness pretrained language models like BERT • They have experimented with tasks that span GEC, OCR fixes, and spelling corrections. • The PIE model has proven to be an accurate and very fast alternative to local sequence transformation. 3 Abstract
  4. 4. マスター タイトルの書式設定 4 4 Abstract
  5. 5. マスター タイトルの書式設定 5 5 Abstract
  6. 6. マスター タイトルの書式設定 6 Method 提 案 手 法 6
  7. 7. マスター タイトルの書式設定 7 Overview of the PIE model 7 Method (C) copy 𝑥𝑖 (A) append a q-gram 𝑤 ∈ Σ 𝑎 (D) delete (R) replace 𝑥𝑖 with q-gram 𝑤 ∈ Σ 𝑎 (T𝑘) word-inflection
  8. 8. マスター タイトルの書式設定 8 The Seq2Edits Function 8 Method
  9. 9. マスター タイトルの書式設定 9 • The Parallel Edit Prediction Model 9 Method
  10. 10. マスター タイトルの書式設定 10 Experiments 実 験 10
  11. 11. マスター タイトルの書式設定 11 Grammatical error correction settings 1 • train: Lang-8 + NUCLE + FCE corpus • 1.2 million sentence pairs in English • validation: CoNLL-13 test set 1. initializing: BERT-LARGE model 2. synthetic training: One-Billion-word corpus (for 2 epochs) 3. fine-tuning: real GEC training corpus (for 2 epochs) • batch size: 64, learning rate: 2e-5 11 Experiments
  12. 12. マスター タイトルの書式設定 12 Artificial Error Generation 12 Experiments
  13. 13. マスター タイトルの書式設定 13 Grammatical error correction settings 2 “edit space” • copy • delete • 1000 appends • 1000 replaces • 29 transformations and their inverse • evaluation • MaxMatch (M2) scores (F0.5) : CONLL-2014-test • GLEU+ scores: JEFLEG corpus 13 Experiments punctuations, articles, pronouns, prepositions, conjunctions, verbs add suffix s, d, es, ing, ed replace suffix s to ing, d to s etc.
  14. 14. マスター タイトルの書式設定 14 Suffix transformations 14 Experiments
  15. 15. マスター タイトルの書式設定 15 Grammatical error correction result 15 Experiments ED ensemble decoding
  16. 16. マスター タイトルの書式設定 16 Grammatical error correction Running Time Comparison 16 Experiments PIE models to be considerably faster than ED models
  17. 17. マスター タイトルの書式設定 17 Grammatical error correction Impact of Iterative Refinement 17 Experiments test set: 1312 sentences The average number of refinement rounds per example was 2.7. In contrast, a sequential model on this dataset would require 23.2 steps.
  18. 18. マスター タイトルの書式設定 18 Grammatical error correction Ablation study on the PIE Architecture 18 Experiments
  19. 19. マスター タイトルの書式設定 19 More Sequence Transduction Tasks • Spell Correction • Correcting OCR errors 19 Experiments
  20. 20. マスター タイトルの書式設定 20 Conclusion 結 論 20
  21. 21. マスター タイトルの書式設定 21 • They presented a parallel iterative edit (PIE) model for local sequence transduction with a focus on the GEC task. • Compared to the popular encoder-decoder models that perform sequential decoding, parallel decoding in the PIE model yields a factor of 5 to 15 reduction in decoding time. • The PIE model employs a number of ideas to match the accuracy of sequential models in spite of parallel decoding: • it predicts in-place edits using a carefully designed edit space, iteratively refines its own predictions, and effectively reuses state-of-the-art pre-trained bi-directional language models. • In the future, they plan to apply the PIE model to more ambitious transduction tasks like translation. 21 Conclusion

×