SlideShare a Scribd company logo
1 of 41
Pharmacology Basics
Definitions
• Pharmacokinetics
– The process by which a drug is absorbed, distributed,
metabolized and eliminated by the body
• Pharmacodynamics
– The interactions of a drug and the receptors responsible for its
action in the body
The Life Cycle of a Drug
(pharmacokinetics)
• Absorption
• Distribution
• Degradation
• Excretion
Slow Absorption
• Orally (swallowed)
• through Mucus Membranes
– Oral Mucosa (e.g. sublingual)
– Nasal Mucosa (e.g. insufflated)
• Topical/Transdermal
(through skin)
• Rectally (suppository)
Faster Absorption
• Parenterally (injection)
– Intravenous (IV)
– Intramuscular (IM)
– Subcutaneous (SC)
– Intraperitoneal (IP)
• Inhaled (through lungs)
Fastest Absorption
• Directly into brain
– Intracerebral (into brain tissue)
– Intracerebroventricular (into brain
ventricles)
General Principle: The faster the absorption, the quicker the
onset, the higher the addictiveness, but the shorter the duration
Absorption: Solubility
• Water-soluble
– Ionized (have electrical charge)
– Crosses through pores in capillaries, but not cell membranes
• Lipid(fat)-soluble
– Non-ionized (no electrical charge)
– Crosses pores, cell membranes, blood-brain-barrier
Dissociation constant or pKa  indicates the pH where 50% of
the drug is ionized (water soluble) and 50% non-ionized (lipid
soluble);
pKeq = pH + log [X]ionized/[X]non-ionized
This affects a drug's solubility, permeability, binding, and other
characteristics.
(hydroxyl group)
(amine group)
Distribution: Depends on Blood Flow and
Blood Brain Barrier
• Excludes ionized
substances;
• Active transport
mechanisms;
• Not uniform – leaky
(circumventricular areas)
Bioavailability
• The fraction of an administered dose of drug that reaches the
blood stream.
• What determines bioavailability?
– Physical properties of the drug (hydrophobicity, pKa, solubility)
– The drug formulation (immediate release, delayed release, etc.)
– If the drug is administered in a fed or fasted state
– Gastric emptying rate
– Circadian differences
– Interactions with other drugs
– Age
– Diet
– Gender
– Disease state
Depot Binding
(accumulation in fatty tissue)
• Drugs bind to “depot sites” or “silent receptors” (fat,
muscle, organs, bones, etc)
• Depot binding reduces bioavailability, slows elimination,
can increase drug detection window
• Depot-bound drugs can be released during sudden weight
loss – may account for flashback experiences?
Degradation & Excretion
• Kidneys
– Traps water-soluble (ionized)
compounds for elimination via urine
(primarily), feces, air, sweat
• Liver
– Enzymes(cytochrome P-450)
transform drugs into more water-
soluble metabolites
– Repeated drug exposure increases
efficiency  tolerance
Excretion: Other routes
• Lungs
alcohol breath
• Breast milk
acidic ---> ion traps alkaloids
alcohol: same concentration as blood
antibiotics
• Also bile, skin, saliva ~~
Metabolism and Elimination (cont.)
• Half-lives and Kinetics
– Half-life:
• Plasma half-life: Time it takes for plasma concentration of a
drug to drop to 50% of initial level.
• Whole body half-life: Time it takes to eliminate half of the
body content of a drug.
– Factors affecting half-life
• age
• renal excretion
• liver metabolism
• protein binding
First order kinetics
A constant fraction of drug is eliminated per unit of time.
When drug concentration is high, rate of disappearance
is high.
Zero order kinetics
Rate of elimination is constant.
Rate of elimination is independent of drug concentration.
Constant amount eliminated per unit of time.
Example: Alcohol
Comparison
• First Order Elimination
– [drug] decreases
exponentially w/ time
– Rate of elimination is
proportional to [drug]
– Plot of log [drug] or
ln[drug] vs. time are
linear
– t 1/2 is constant
regardless of [drug]
• Zero Order Elimination
– [drug] decreases linearly
with time
– Rate of elimination is
constant
– Rate of elimination is
independent of [drug]
– No true t 1/2
Drug Effectiveness
• Dose-response (DR) curve
– Depicts the relation between
drug dose and magnitude of drug
effect
• Drugs can have more than one
effect
• Drugs vary in effectiveness
– Different sites of action
– Different affinities for
receptors
• The effectiveness of a drug is
considered relative to its safety
(therapeutic index)
ED50 = effective dose in 50% of population
100
50
0
DRUG DOSE
0 X
ED50
% subjects
Therapeutic Index
• Effective dose (ED50) = dose at which 50% population shows response
• Lethal dose (LD50) =dose at which 50% population dies
• TI = LD50/ED50, an indication of safety of a drug (higher is better)
ED50 LD50
Potency
• Relative strength of response for a given dose
– Effective concentration (EC50) is the concentration of an agonist needed to
elicit half of the maximum biological response of the agonist
– The potency of an agonist is inversely related to its EC50 value
• D-R curve shifts left with greater potency
Efficacy
• Maximum possible effect relative
to other agents
• Indicated by peak of D-R curve
• Full agonist = 100% efficacy
• Partial agonist = 50% efficacy
• Antagonist = 0% efficacy
• Inverse agonist = -100% efficacy
Average
Response
Magnitude
LO
DRUG DOSE
0 X
HI
A
B
C
Comparisons
Tolerance
(desensitization)
• Decreased response to same
dose with repeated (constant)
exposure
• or more drug needed to achieve
same effect
• Right-ward shift of D-R curve
• Sometimes occurs in an acute
dose (e.g. alcohol)
• Can develop across drugs (cross-
tolerance)
• Caused by compensatory
mechanisms that oppose the
effects of the drug
Sensitization
• Increased response to same dose
with repeated (binge-like)
exposure
• or less drug needed to achieve
same effect
• Left-ward shift in D-R curve
• Sometimes occurs in an acute
dose (e.g. amphetamine)
• Can develop across drugs (cross-
sensitization)
It is possible to develop tolerance to some side effects AND sensitization
to other side effects of the same drug
Mechanisms of Tolerance and Sensitization
• Pharmacokinetic
– changes in drug availability at site of action (decreased bioavailability)
– Decreased absorption
– Increased binding to depot sites
• Pharmacodynamic
– changes in drug-receptor interaction
– G-protein uncoupling
– Down regulation of receptors
Other Mechanisms of
Tolerance and Sensitization
• Psychological
As the user becomes familiar with the drug’s effects, s/he learns tricks to
hide or counteract the effects.
Set (expectations) and setting (environment)
Motivational
Habituation
Classical and instrumental conditioning (automatic physiological change in
response to cues)
• Metabolic
The user is able to break down and/or excrete the drug more quickly due
to repeated exposure.
Increased excretion
• Pharmacokinetic and pharmacodynamic
– With pharmacokinetic drug interactions, one drug affects the
absorption, distribution, metabolism, or excretion of another.
– With pharmacodynamic drug interactions, two drugs have
interactive effects in the brain.
– Either type of drug interaction can result in adverse effects in
some individuals.
– In terms of efficacy, there can be several types of interactions
between medications: cumulative, additive, synergistic, and
antagonistic.
Drug-drug Interactions
Response
Hi
Lo
Time
Cumulative Effects
Drug A
Drug B
The condition in which repeated administration of a drug may produce effects
that are more pronounced than those produced by the first dose.
Response
Hi
Lo
Time
A B
Additive Effects
A + B
The effect of two chemicals is equal to the sum of the effect of the two
chemicals taken separately, eg., aspirin and motrin.
Response
Hi
Lo
Time
A B
A + B
Synergistic Effects
The effect of two chemicals taken together is greater than the sum of their
separate effect at the same doses, e.g., alcohol and other drugs
Response
Hi
Lo
Time
A B
A + B
Antagonistic Effects
The effect of two chemicals taken together is less than the sum of their separate
effect at the same doses
Pharmacodynamics
• Receptor
– target/site of drug action (e.g. genetically-coded proteins
embedded in neural membrane)
• Lock and key or induced-fit models
– drug acts as key, receptor as lock, combination yields response
– dynamic and flexible interaction
Pharmacodynamics (cont.)
• Affinity
– propensity of a drug to bind with a receptor
• Selectivity
– specific affinity for certain receptors (vs. others)
Agonism and Antagonism
Agonists facilitate receptor
response
Antagonists inhibit receptor
response
(direct ant/agonists)
Modes of Action
• Agonism
– A compound that does the
job of a natural substance.
– Does not effect the rate of
an enzyme catalyzed
reaction.
• Up/down regulation
– Tolerance/sensitivity at the
cellular level may be due to
a change in # of receptors
(without the appropriate
subunit) due to changes in
stimulation
• Antagonism
– A compound inhibits an
enzyme from doing its job.
– Slows down an
enzymatically catalyzed
reaction.
Agonists/Antagonists
• Full
• Partial
• Direct/Competitive
• Indirect/Noncompetitive
• Inverse
A single drug can bind to a single
receptor and cause a mix of effects
(agonist, partial agonist, inverse agonist,
antagonist)
Functional Selectivity Hypothesis:
Conformational change induced by a
ligand-receptor interaction may cause
differential functional activation
depending on the G-protein and other
proteins associated with the target
receptor
Important implications of
drug-receptor interaction
• drugs can potentially alter rate of any bodily/brain function
• drugs cannot impart entirely new functions to cells
• drugs do not create effects, only modify ongoing ones
• drugs can allow for effects outside of normal physiological
range
Law of Mass Action
(a model to explain ligand-receptor binding)
• When a drug combines with a receptor, it does so at a rate which
is dependent on the concentration of the drug and of the receptor
• Assumes it’s a reversible reaction
• Equilibrium dissociation (Kd) and association/affinity (Ka)
constants
– Kd = Kon/Koff = [D][R]/[DR]
– Ka = 1/Kd = Koff/Kon = [DR]/[D][R]

More Related Content

Similar to Pharmacology_Basics.ppt

Drugs & behavior_tsdw
Drugs & behavior_tsdwDrugs & behavior_tsdw
Drugs & behavior_tsdwyb12g
 
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.pptwakogeleta
 
Drug interactions in psychiatry
Drug interactions in psychiatryDrug interactions in psychiatry
Drug interactions in psychiatryDr.Pj Chakma
 
DRUG ACTION- NURSING FOUNDATIONS.pptx
DRUG ACTION- NURSING FOUNDATIONS.pptxDRUG ACTION- NURSING FOUNDATIONS.pptx
DRUG ACTION- NURSING FOUNDATIONS.pptxSandhya C
 
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A PPharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A PRavinandan A P
 
Introduction of Pharma post rn.pptx
Introduction of Pharma post rn.pptxIntroduction of Pharma post rn.pptx
Introduction of Pharma post rn.pptxPATNIHUSAINIBLOODBAN
 
Pharmacodynamics revised
Pharmacodynamics   revisedPharmacodynamics   revised
Pharmacodynamics revisedOmar Moatamed
 
M1 - Pharmacology
M1 - PharmacologyM1 - Pharmacology
M1 - PharmacologyBibul2
 
SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15Michelle Meyer
 
pharmacodynamics 1.pdf
pharmacodynamics 1.pdfpharmacodynamics 1.pdf
pharmacodynamics 1.pdfImtiyaz60
 
SESSION 1 PHARMA.pptx at ghhhjjyggggghhh
SESSION 1 PHARMA.pptx at ghhhjjyggggghhhSESSION 1 PHARMA.pptx at ghhhjjyggggghhh
SESSION 1 PHARMA.pptx at ghhhjjyggggghhhbenalphaemma
 
Chapter 5 How and Why Drugs Work
Chapter 5 How and Why Drugs WorkChapter 5 How and Why Drugs Work
Chapter 5 How and Why Drugs WorkMichelle Meyer
 
PSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptxPSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptxSabaJahan2
 

Similar to Pharmacology_Basics.ppt (20)

Drugs & behavior_tsdw
Drugs & behavior_tsdwDrugs & behavior_tsdw
Drugs & behavior_tsdw
 
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
2 posology and pharmacodynamics midwifery 2014 E.C 2.ppt
 
Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012Pharma 2012 introduction lec 1 final 2012
Pharma 2012 introduction lec 1 final 2012
 
4556210.ppt
4556210.ppt4556210.ppt
4556210.ppt
 
Pharmacology pdf
Pharmacology pdfPharmacology pdf
Pharmacology pdf
 
Drug interactions in psychiatry
Drug interactions in psychiatryDrug interactions in psychiatry
Drug interactions in psychiatry
 
DRUG ACTION- NURSING FOUNDATIONS.pptx
DRUG ACTION- NURSING FOUNDATIONS.pptxDRUG ACTION- NURSING FOUNDATIONS.pptx
DRUG ACTION- NURSING FOUNDATIONS.pptx
 
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A PPharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
Pharmacokinetics and Pharmacodynamic- General Pharmacology Ravinandan A P
 
Introduction of Pharma post rn.pptx
Introduction of Pharma post rn.pptxIntroduction of Pharma post rn.pptx
Introduction of Pharma post rn.pptx
 
Understanding Pharmacodynamics
Understanding PharmacodynamicsUnderstanding Pharmacodynamics
Understanding Pharmacodynamics
 
Pharmacodynamics revised
Pharmacodynamics   revisedPharmacodynamics   revised
Pharmacodynamics revised
 
M1 - Pharmacology
M1 - PharmacologyM1 - Pharmacology
M1 - Pharmacology
 
SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15SOC 204 Goldberg ch 5.1 hybid Fall15
SOC 204 Goldberg ch 5.1 hybid Fall15
 
Chapter02
Chapter02Chapter02
Chapter02
 
pharmacodynamics 1.pdf
pharmacodynamics 1.pdfpharmacodynamics 1.pdf
pharmacodynamics 1.pdf
 
Pharmacodynamics PPT
Pharmacodynamics PPTPharmacodynamics PPT
Pharmacodynamics PPT
 
SESSION 1 PHARMA.pptx at ghhhjjyggggghhh
SESSION 1 PHARMA.pptx at ghhhjjyggggghhhSESSION 1 PHARMA.pptx at ghhhjjyggggghhh
SESSION 1 PHARMA.pptx at ghhhjjyggggghhh
 
MBBS Year 1 Intro to pharamcology 2016
MBBS Year 1 Intro to pharamcology 2016MBBS Year 1 Intro to pharamcology 2016
MBBS Year 1 Intro to pharamcology 2016
 
Chapter 5 How and Why Drugs Work
Chapter 5 How and Why Drugs WorkChapter 5 How and Why Drugs Work
Chapter 5 How and Why Drugs Work
 
PSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptxPSYCHOPHARMACOLOGY.pptx
PSYCHOPHARMACOLOGY.pptx
 

More from ssuser660bb1

define_xml_tutorial .ppt
define_xml_tutorial .pptdefine_xml_tutorial .ppt
define_xml_tutorial .pptssuser660bb1
 
Session4_TrackA_Workshop_Tinazzi_Faini.pptx
Session4_TrackA_Workshop_Tinazzi_Faini.pptxSession4_TrackA_Workshop_Tinazzi_Faini.pptx
Session4_TrackA_Workshop_Tinazzi_Faini.pptxssuser660bb1
 
ISO dates in SAS.pdf
ISO dates in SAS.pdfISO dates in SAS.pdf
ISO dates in SAS.pdfssuser660bb1
 
SAS Programming.ppt
SAS Programming.pptSAS Programming.ppt
SAS Programming.pptssuser660bb1
 
Save Coding Time with Proc SQL.ppt
Save Coding Time with Proc SQL.pptSave Coding Time with Proc SQL.ppt
Save Coding Time with Proc SQL.pptssuser660bb1
 
citc-rwe-8dec2021_v2.pdf
citc-rwe-8dec2021_v2.pdfcitc-rwe-8dec2021_v2.pdf
citc-rwe-8dec2021_v2.pdfssuser660bb1
 
David-Graham-HGML-presentation-20190424.pptx
David-Graham-HGML-presentation-20190424.pptxDavid-Graham-HGML-presentation-20190424.pptx
David-Graham-HGML-presentation-20190424.pptxssuser660bb1
 

More from ssuser660bb1 (10)

protocols.pptx
protocols.pptxprotocols.pptx
protocols.pptx
 
regulatory.pptx
regulatory.pptxregulatory.pptx
regulatory.pptx
 
define_xml_tutorial .ppt
define_xml_tutorial .pptdefine_xml_tutorial .ppt
define_xml_tutorial .ppt
 
Session4_TrackA_Workshop_Tinazzi_Faini.pptx
Session4_TrackA_Workshop_Tinazzi_Faini.pptxSession4_TrackA_Workshop_Tinazzi_Faini.pptx
Session4_TrackA_Workshop_Tinazzi_Faini.pptx
 
ADaM
ADaMADaM
ADaM
 
ISO dates in SAS.pdf
ISO dates in SAS.pdfISO dates in SAS.pdf
ISO dates in SAS.pdf
 
SAS Programming.ppt
SAS Programming.pptSAS Programming.ppt
SAS Programming.ppt
 
Save Coding Time with Proc SQL.ppt
Save Coding Time with Proc SQL.pptSave Coding Time with Proc SQL.ppt
Save Coding Time with Proc SQL.ppt
 
citc-rwe-8dec2021_v2.pdf
citc-rwe-8dec2021_v2.pdfcitc-rwe-8dec2021_v2.pdf
citc-rwe-8dec2021_v2.pdf
 
David-Graham-HGML-presentation-20190424.pptx
David-Graham-HGML-presentation-20190424.pptxDavid-Graham-HGML-presentation-20190424.pptx
David-Graham-HGML-presentation-20190424.pptx
 

Recently uploaded

Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.ANJALI
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Mohamed Rizk Khodair
 
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATROApril 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATROKanhu Charan
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisGolden Helix
 
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxSYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxdrashraf369
 
Basic principles involved in the traditional systems of medicine PDF.pdf
Basic principles involved in the traditional systems of medicine PDF.pdfBasic principles involved in the traditional systems of medicine PDF.pdf
Basic principles involved in the traditional systems of medicine PDF.pdfDivya Kanojiya
 
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...saminamagar
 
LUNG TUMORS AND ITS CLASSIFICATIONS.pdf
LUNG TUMORS AND ITS  CLASSIFICATIONS.pdfLUNG TUMORS AND ITS  CLASSIFICATIONS.pdf
LUNG TUMORS AND ITS CLASSIFICATIONS.pdfDolisha Warbi
 
POST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxPOST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxvirengeeta
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfSreeja Cherukuru
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Prerana Jadhav
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 
Presentation on Parasympathetic Nervous System
Presentation on Parasympathetic Nervous SystemPresentation on Parasympathetic Nervous System
Presentation on Parasympathetic Nervous SystemPrerana Jadhav
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdfDolisha Warbi
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsMedicoseAcademics
 
world health day presentation ppt download
world health day presentation ppt downloadworld health day presentation ppt download
world health day presentation ppt downloadAnkitKumar311566
 
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxNiranjan Chavan
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 

Recently uploaded (20)

Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)
 
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATROApril 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
 
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptxSYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
SYNDESMOTIC INJURY- ANATOMICAL REPAIR.pptx
 
Basic principles involved in the traditional systems of medicine PDF.pdf
Basic principles involved in the traditional systems of medicine PDF.pdfBasic principles involved in the traditional systems of medicine PDF.pdf
Basic principles involved in the traditional systems of medicine PDF.pdf
 
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
call girls in Dwarka Sector 21 Metro DELHI 🔝 >༒9540349809 🔝 genuine Escort Se...
 
LUNG TUMORS AND ITS CLASSIFICATIONS.pdf
LUNG TUMORS AND ITS  CLASSIFICATIONS.pdfLUNG TUMORS AND ITS  CLASSIFICATIONS.pdf
LUNG TUMORS AND ITS CLASSIFICATIONS.pdf
 
POST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptxPOST NATAL EXERCISES AND ITS IMPACT.pptx
POST NATAL EXERCISES AND ITS IMPACT.pptx
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
 
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in paharganj DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 
Presentation on Parasympathetic Nervous System
Presentation on Parasympathetic Nervous SystemPresentation on Parasympathetic Nervous System
Presentation on Parasympathetic Nervous System
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
 
Hematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes FunctionsHematology and Immunology - Leukocytes Functions
Hematology and Immunology - Leukocytes Functions
 
world health day presentation ppt download
world health day presentation ppt downloadworld health day presentation ppt download
world health day presentation ppt download
 
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
Wessex Health Partners Wessex Integrated Care, Population Health, Research & ...
 
Case Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptxCase Report Peripartum Cardiomyopathy.pptx
Case Report Peripartum Cardiomyopathy.pptx
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 

Pharmacology_Basics.ppt

  • 1.
  • 3. Definitions • Pharmacokinetics – The process by which a drug is absorbed, distributed, metabolized and eliminated by the body • Pharmacodynamics – The interactions of a drug and the receptors responsible for its action in the body
  • 4. The Life Cycle of a Drug (pharmacokinetics) • Absorption • Distribution • Degradation • Excretion
  • 5. Slow Absorption • Orally (swallowed) • through Mucus Membranes – Oral Mucosa (e.g. sublingual) – Nasal Mucosa (e.g. insufflated) • Topical/Transdermal (through skin) • Rectally (suppository)
  • 6. Faster Absorption • Parenterally (injection) – Intravenous (IV) – Intramuscular (IM) – Subcutaneous (SC) – Intraperitoneal (IP) • Inhaled (through lungs)
  • 7. Fastest Absorption • Directly into brain – Intracerebral (into brain tissue) – Intracerebroventricular (into brain ventricles) General Principle: The faster the absorption, the quicker the onset, the higher the addictiveness, but the shorter the duration
  • 8. Absorption: Solubility • Water-soluble – Ionized (have electrical charge) – Crosses through pores in capillaries, but not cell membranes • Lipid(fat)-soluble – Non-ionized (no electrical charge) – Crosses pores, cell membranes, blood-brain-barrier Dissociation constant or pKa  indicates the pH where 50% of the drug is ionized (water soluble) and 50% non-ionized (lipid soluble); pKeq = pH + log [X]ionized/[X]non-ionized This affects a drug's solubility, permeability, binding, and other characteristics.
  • 10. Distribution: Depends on Blood Flow and Blood Brain Barrier
  • 11. • Excludes ionized substances; • Active transport mechanisms; • Not uniform – leaky (circumventricular areas)
  • 12. Bioavailability • The fraction of an administered dose of drug that reaches the blood stream. • What determines bioavailability? – Physical properties of the drug (hydrophobicity, pKa, solubility) – The drug formulation (immediate release, delayed release, etc.) – If the drug is administered in a fed or fasted state – Gastric emptying rate – Circadian differences – Interactions with other drugs – Age – Diet – Gender – Disease state
  • 13. Depot Binding (accumulation in fatty tissue) • Drugs bind to “depot sites” or “silent receptors” (fat, muscle, organs, bones, etc) • Depot binding reduces bioavailability, slows elimination, can increase drug detection window • Depot-bound drugs can be released during sudden weight loss – may account for flashback experiences?
  • 14. Degradation & Excretion • Kidneys – Traps water-soluble (ionized) compounds for elimination via urine (primarily), feces, air, sweat • Liver – Enzymes(cytochrome P-450) transform drugs into more water- soluble metabolites – Repeated drug exposure increases efficiency  tolerance
  • 15. Excretion: Other routes • Lungs alcohol breath • Breast milk acidic ---> ion traps alkaloids alcohol: same concentration as blood antibiotics • Also bile, skin, saliva ~~
  • 16. Metabolism and Elimination (cont.) • Half-lives and Kinetics – Half-life: • Plasma half-life: Time it takes for plasma concentration of a drug to drop to 50% of initial level. • Whole body half-life: Time it takes to eliminate half of the body content of a drug. – Factors affecting half-life • age • renal excretion • liver metabolism • protein binding
  • 17. First order kinetics A constant fraction of drug is eliminated per unit of time. When drug concentration is high, rate of disappearance is high.
  • 18. Zero order kinetics Rate of elimination is constant. Rate of elimination is independent of drug concentration. Constant amount eliminated per unit of time. Example: Alcohol
  • 19. Comparison • First Order Elimination – [drug] decreases exponentially w/ time – Rate of elimination is proportional to [drug] – Plot of log [drug] or ln[drug] vs. time are linear – t 1/2 is constant regardless of [drug] • Zero Order Elimination – [drug] decreases linearly with time – Rate of elimination is constant – Rate of elimination is independent of [drug] – No true t 1/2
  • 20. Drug Effectiveness • Dose-response (DR) curve – Depicts the relation between drug dose and magnitude of drug effect • Drugs can have more than one effect • Drugs vary in effectiveness – Different sites of action – Different affinities for receptors • The effectiveness of a drug is considered relative to its safety (therapeutic index)
  • 21. ED50 = effective dose in 50% of population 100 50 0 DRUG DOSE 0 X ED50 % subjects
  • 22. Therapeutic Index • Effective dose (ED50) = dose at which 50% population shows response • Lethal dose (LD50) =dose at which 50% population dies • TI = LD50/ED50, an indication of safety of a drug (higher is better) ED50 LD50
  • 23. Potency • Relative strength of response for a given dose – Effective concentration (EC50) is the concentration of an agonist needed to elicit half of the maximum biological response of the agonist – The potency of an agonist is inversely related to its EC50 value • D-R curve shifts left with greater potency
  • 24. Efficacy • Maximum possible effect relative to other agents • Indicated by peak of D-R curve • Full agonist = 100% efficacy • Partial agonist = 50% efficacy • Antagonist = 0% efficacy • Inverse agonist = -100% efficacy
  • 26. Tolerance (desensitization) • Decreased response to same dose with repeated (constant) exposure • or more drug needed to achieve same effect • Right-ward shift of D-R curve • Sometimes occurs in an acute dose (e.g. alcohol) • Can develop across drugs (cross- tolerance) • Caused by compensatory mechanisms that oppose the effects of the drug
  • 27. Sensitization • Increased response to same dose with repeated (binge-like) exposure • or less drug needed to achieve same effect • Left-ward shift in D-R curve • Sometimes occurs in an acute dose (e.g. amphetamine) • Can develop across drugs (cross- sensitization) It is possible to develop tolerance to some side effects AND sensitization to other side effects of the same drug
  • 28. Mechanisms of Tolerance and Sensitization • Pharmacokinetic – changes in drug availability at site of action (decreased bioavailability) – Decreased absorption – Increased binding to depot sites • Pharmacodynamic – changes in drug-receptor interaction – G-protein uncoupling – Down regulation of receptors
  • 29. Other Mechanisms of Tolerance and Sensitization • Psychological As the user becomes familiar with the drug’s effects, s/he learns tricks to hide or counteract the effects. Set (expectations) and setting (environment) Motivational Habituation Classical and instrumental conditioning (automatic physiological change in response to cues) • Metabolic The user is able to break down and/or excrete the drug more quickly due to repeated exposure. Increased excretion
  • 30. • Pharmacokinetic and pharmacodynamic – With pharmacokinetic drug interactions, one drug affects the absorption, distribution, metabolism, or excretion of another. – With pharmacodynamic drug interactions, two drugs have interactive effects in the brain. – Either type of drug interaction can result in adverse effects in some individuals. – In terms of efficacy, there can be several types of interactions between medications: cumulative, additive, synergistic, and antagonistic. Drug-drug Interactions
  • 31. Response Hi Lo Time Cumulative Effects Drug A Drug B The condition in which repeated administration of a drug may produce effects that are more pronounced than those produced by the first dose.
  • 32. Response Hi Lo Time A B Additive Effects A + B The effect of two chemicals is equal to the sum of the effect of the two chemicals taken separately, eg., aspirin and motrin.
  • 33. Response Hi Lo Time A B A + B Synergistic Effects The effect of two chemicals taken together is greater than the sum of their separate effect at the same doses, e.g., alcohol and other drugs
  • 34. Response Hi Lo Time A B A + B Antagonistic Effects The effect of two chemicals taken together is less than the sum of their separate effect at the same doses
  • 35. Pharmacodynamics • Receptor – target/site of drug action (e.g. genetically-coded proteins embedded in neural membrane) • Lock and key or induced-fit models – drug acts as key, receptor as lock, combination yields response – dynamic and flexible interaction
  • 36. Pharmacodynamics (cont.) • Affinity – propensity of a drug to bind with a receptor • Selectivity – specific affinity for certain receptors (vs. others)
  • 37. Agonism and Antagonism Agonists facilitate receptor response Antagonists inhibit receptor response (direct ant/agonists)
  • 38. Modes of Action • Agonism – A compound that does the job of a natural substance. – Does not effect the rate of an enzyme catalyzed reaction. • Up/down regulation – Tolerance/sensitivity at the cellular level may be due to a change in # of receptors (without the appropriate subunit) due to changes in stimulation • Antagonism – A compound inhibits an enzyme from doing its job. – Slows down an enzymatically catalyzed reaction.
  • 39. Agonists/Antagonists • Full • Partial • Direct/Competitive • Indirect/Noncompetitive • Inverse A single drug can bind to a single receptor and cause a mix of effects (agonist, partial agonist, inverse agonist, antagonist) Functional Selectivity Hypothesis: Conformational change induced by a ligand-receptor interaction may cause differential functional activation depending on the G-protein and other proteins associated with the target receptor
  • 40. Important implications of drug-receptor interaction • drugs can potentially alter rate of any bodily/brain function • drugs cannot impart entirely new functions to cells • drugs do not create effects, only modify ongoing ones • drugs can allow for effects outside of normal physiological range
  • 41. Law of Mass Action (a model to explain ligand-receptor binding) • When a drug combines with a receptor, it does so at a rate which is dependent on the concentration of the drug and of the receptor • Assumes it’s a reversible reaction • Equilibrium dissociation (Kd) and association/affinity (Ka) constants – Kd = Kon/Koff = [D][R]/[DR] – Ka = 1/Kd = Koff/Kon = [DR]/[D][R]