JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide

F
FestGroupFestGroup
HazelcastHazelcast
The Hitchhiker's GuideThe Hitchhiker's Guide
Grzegorz PiwowarekGrzegorz Piwowarek
@pivovarit@pivovarit
{{ }}
Senior Software Engineer @Senior Software Engineer @
Trainer @Trainer @
4comprehension.com4comprehension.com
HazelcastHazelcast
Bottega IT MindsBottega IT Minds
@pivovarit@pivovarit
JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide
Born in 2008 in Turkey as a simple caching solution...
source: Hazelcast
The Hazelcast IMDG is an operational in-memory computing platform that manages data and distributes
processing using memory and parallel execution for breakthrough application speed and scale.
source: Hazelcast
source: Hazelcast
source: Hazelcast
source: Hazelcast
IMDGIMDG
In-Memory Data GridIn-Memory Data Grid
In-Memory (no persistence)
Storage/Computation
Multiple processes working as a group
Embedded
Client-Server
Cache Access PatternsCache Access Patterns
Read-through
Write-through
Write-behind
Near Cache
Read-throughRead-through
source: Hazelcast
Write-throughWrite-through
source: Hazelcast
Write-behindWrite-behind
source: Hazelcast
Near CacheNear Cache
source: Hazelcast
<dependencies>
<dependency>
<groupid>com.hazelcast</groupid>
<artifactid>hazelcast</artifactid>
<version>4.0.1</version>
</dependency>
</dependencies>
ShadedShaded
EmbeddedEmbedded
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Client-ServerClient-Server
HazelcastInstance hazelcastInstance = HazelcastClient.newHazelcastClient();
ClientsClients
JavaJava
ScalaScala
C++C++
C#/.NETC#/.NET
PythonPython
Node.jsNode.js
GoGo
Rust (work-in-progress)Rust (work-in-progress)
Binary Client ProtocolBinary Client Protocol
// import com.hazelcast.map.IMap;
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
IMap<String, Integer> simpleMap = hazelcastInstance.getMap("simpleMap");
simpleMap.put("foo", 42);
simpleMap.get("foo"); // 42
// import java.util.Map;
HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance();
Map<String, Integer> simpleMap = hazelcastInstance.getMap("simpleMap");
simpleMap.put("foo", 42);
simpleMap.get("foo"); // 42
source: Hazelcast
Map is just the beginningMap is just the beginning
MultiMap
ReplicatedMap (non-partitioned Map)
Set
List
Queue
Topic
Data Structures is just the beginningData Structures is just the beginning
EntryProcessorEntryProcessor
Instead of fetching the data, processing it and sending it back, let a cluster process it. A processed entry
remains locked during processing
@BinaryInterface
@FunctionalInterface
public interface EntryProcessor<K, V, R> extends Serializable {
R process(Entry<K, V> entry);
}
ExecutorServiceExecutorService
public interface IExecutorService
extends ExecutorService, DistributedObject {
void execute(Runnable command, MemberSelector memberSelector);
void executeOnAllMembers(Runnable command);
// ...
}
AggregationAggregation
IMap<String, Employee> employees = hz.getMap("employees");
double avgSalary = employees.aggregate(
new Aggregator<Map.Entry<String, Employee>, Double>() {
protected long sum;
protected long count;
@Override
public void accumulate(Map.Entry<String, Employee> entry) {
count++;
sum += entry.getValue().getSalaryPerMonth();
}
// ...
});
QueriesQueries
IMap<String, Employee> map = hazelcastInstance.getMap("employee");
Set<Employee> employees = map.values(new SqlPredicate("active AND age < 30"));
CAP TheoremCAP Theorem
ConsistencyConsistency
AvailabilityAvailability
Partition TolerancePartition Tolerance
Pick two.
source: Hazelcast
CP SubsystemCP Subsystem
source: Hazelcast
Linearizable, distributed implementations of Java concurrency primitives
Raft-based(http://thesecretlivesofdata.com/raft/)
Jepsen-veri ed
Requires minimum 3 members
Semaphore
CountDownLatch
AtomicReference
AtomicLong
Advanced Data StructuresAdvanced Data Structures
RingBu erRingBu er
A xed-capacity data structure that overwrites oldest elements when capacity is exceeded
HyperLogLogHyperLogLog
A probabilistic data structure used to estimate the cardinality(number of unique elements) of a data set.
The HyperLogLog algorithm can estimate cardinalities well beyond 10^9 with a relative accuracy
(standard error) of 2% while only using 1.5kb of memory.
Fangjin Yang Fast, Cheap, and 98% Right: Cardinality Estimation for Big Data
Flake Id GeneratorFlake Id Generator
Cluster-wide ordered and unique identi ers IDs without any coordination between members
safe even in split-brain scenario
CRDT PN CounterCRDT PN Counter
A con ict-free alternative to AtomicLong
Other IntegrationsOther Integrations
Hibernate 2LCHibernate 2LC
Hazelcast provides a distributed second level cache for your Hibernate entities, collections and queries.
http://github.com/hazelcast/hazelcast-hibernate5/http://github.com/hazelcast/hazelcast-hibernate5/
Spring DataSpring Data
Spring Data Hazelcast Integration
https://github.com/hazelcast/spring-data-hazelcasthttps://github.com/hazelcast/spring-data-hazelcast
Quarkus Hazelcast ClientQuarkus Hazelcast Client
https://github.com/hazelcast/quarkus-hazelcast-clienthttps://github.com/hazelcast/quarkus-hazelcast-client
Tomcat Session ManagerTomcat Session Manager
Each HttpSession object is kept in the Hazelcast Map
https://github.com/hazelcast/hazelcast-tomcat-sessionmanagerhttps://github.com/hazelcast/hazelcast-tomcat-sessionmanager
Apache ShiroApache Shiro
Apache Shiro is a security framework that performs authentication, authorization, cryptography, and session
management. Shiro uses Hazelcast for caching and session clustering.
Envoy ProxyEnvoy Proxy
Apache Shiro is a security framework that performs authentication, authorization, cryptography, and session
management. Shiro uses Hazelcast for caching and session clustering.
https://github.com/envoyproxy/envoy/pull/10536https://github.com/envoyproxy/envoy/pull/10536
Cloud IntegrationsCloud Integrations
Zone-awareness + autodiscoveryZone-awareness + autodiscovery
AWS
GCP
Azure
Hazelcast CloudHazelcast Cloud
Hazelcast IMDG cluster as a serviceHazelcast IMDG cluster as a service
https://cloud.hazelcast.comhttps://cloud.hazelcast.com
Enterprise FeaturesEnterprise Features
Striim Hot Cache
Management Center
Security Suite
Disaster Recovery
WAN Replication
Rolling Upgrades
HD Memory
Striim Hot CacheStriim Hot Cache
source: Hazelcast
Disaster RecoveryDisaster Recovery
source: Hazelcast
WAN ReplicationWAN Replication
source: Hazelcast
HD Memory(o -heap store)HD Memory(o -heap store)
Hot Restart StoreHot Restart Store
FutureFuture
JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide
JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide
Hazelcast JetHazelcast Jet
private static Pipeline buildPipeline() {
Pipeline p = Pipeline.create();
p.readFrom(TestSources.itemStream(100, (ts, seq) -> nextRandomNumber()))
.withIngestionTimestamps()
.window(WindowDefinition.tumbling(1000))
.aggregate(AggregateOperations.topN(TOP, ComparatorEx.comparingLong(l -> l)))
.map(WindowResult::result)
.writeTo(Sinks.observable(RESULTS));
return p;
}
Hazelcast Jet Design DocumentsHazelcast Jet Design Documents
Hazelcast Jet ArchitectureHazelcast Jet Architecture
https://jet-start.sh/docs/design-docs/https://jet-start.sh/docs/design-docs/
https://jet-start.sh/docs/architecture/distributed-computinghttps://jet-start.sh/docs/architecture/distributed-computing
TutorialsTutorials
https://training.hazelcast.comhttps://training.hazelcast.com
Want to contribute but don't know where/how to start?Want to contribute but don't know where/how to start?
@jholusa@jholusa
@pivovarit
Thank You!Thank You!
https://pivovarit.github.io/talks/hazelcasthttps://pivovarit.github.io/talks/hazelcast
Twitter: @pivovaritTwitter: @pivovarit
1 of 61

Recommended

Federated Queries Across Both Different Storage Mediums and Different Data En... by
Federated Queries Across Both Different Storage Mediums and Different Data En...Federated Queries Across Both Different Storage Mediums and Different Data En...
Federated Queries Across Both Different Storage Mediums and Different Data En...VMware Tanzu
494 views33 slides
Data Gloveboxes: A Philosophy of Data Science Data Security by
Data Gloveboxes: A Philosophy of Data Science Data SecurityData Gloveboxes: A Philosophy of Data Science Data Security
Data Gloveboxes: A Philosophy of Data Science Data SecurityDataWorks Summit
289 views37 slides
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム by
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォームPivotal Greenplum 次世代マルチクラウド・データ分析プラットフォーム
Pivotal Greenplum 次世代マルチクラウド・データ分析プラットフォームMasayuki Matsushita
501 views36 slides
Performance modeling and simulation for accumulo applications by
Performance modeling and simulation for accumulo applicationsPerformance modeling and simulation for accumulo applications
Performance modeling and simulation for accumulo applicationsAccumulo Summit
115 views22 slides
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 by
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Herman Wu
648 views57 slides
Computing Outside The Box September 2009 by
Computing Outside The Box September 2009Computing Outside The Box September 2009
Computing Outside The Box September 2009Ian Foster
624 views69 slides

More Related Content

What's hot

Computing Outside The Box June 2009 by
Computing Outside The Box June 2009Computing Outside The Box June 2009
Computing Outside The Box June 2009Ian Foster
766 views68 slides
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So... by
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...Databricks
921 views11 slides
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit... by
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...Databricks
680 views40 slides
Presentation Ispass 2012 Session6 Presentation1 by
Presentation Ispass 2012 Session6 Presentation1Presentation Ispass 2012 Session6 Presentation1
Presentation Ispass 2012 Session6 Presentation1sairahul321
280 views20 slides
Hd insight overview by
Hd insight overviewHd insight overview
Hd insight overviewvhrocca
1.3K views16 slides
Bio bigdata by
Bio bigdata Bio bigdata
Bio bigdata Mk Kim
3.8K views112 slides

What's hot(20)

Computing Outside The Box June 2009 by Ian Foster
Computing Outside The Box June 2009Computing Outside The Box June 2009
Computing Outside The Box June 2009
Ian Foster766 views
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So... by Databricks
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Databricks921 views
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit... by Databricks
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...
Bringing an AI Ecosystem to the Domain Expert and Enterprise AI Developer wit...
Databricks680 views
Presentation Ispass 2012 Session6 Presentation1 by sairahul321
Presentation Ispass 2012 Session6 Presentation1Presentation Ispass 2012 Session6 Presentation1
Presentation Ispass 2012 Session6 Presentation1
sairahul321280 views
Hd insight overview by vhrocca
Hd insight overviewHd insight overview
Hd insight overview
vhrocca1.3K views
Bio bigdata by Mk Kim
Bio bigdata Bio bigdata
Bio bigdata
Mk Kim3.8K views
Hadoop workshop by Fang Mac
Hadoop workshopHadoop workshop
Hadoop workshop
Fang Mac1.4K views
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr... by Sri Ambati
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
Sri Ambati1.6K views
Big Data Learnings from a Vendor's Perspective by Aerospike, Inc.
Big Data Learnings from a Vendor's PerspectiveBig Data Learnings from a Vendor's Perspective
Big Data Learnings from a Vendor's Perspective
Aerospike, Inc. 813 views
Fast data in times of crisis with GPU accelerated database QikkDB | Business ... by Matej Misik
Fast data in times of crisis with GPU accelerated database QikkDB | Business ...Fast data in times of crisis with GPU accelerated database QikkDB | Business ...
Fast data in times of crisis with GPU accelerated database QikkDB | Business ...
Matej Misik95 views
Apache IOTDB: a Time Series Database for Industrial IoT by jixuan1989
Apache IOTDB: a Time Series Database for Industrial IoTApache IOTDB: a Time Series Database for Industrial IoT
Apache IOTDB: a Time Series Database for Industrial IoT
jixuan19893.2K views
Scalable Incremental Index for Druid by Itai Yaffe
Scalable Incremental Index for DruidScalable Incremental Index for Druid
Scalable Incremental Index for Druid
Itai Yaffe188 views
Data Science with the Help of Metadata by Jim Dowling
Data Science with the Help of MetadataData Science with the Help of Metadata
Data Science with the Help of Metadata
Jim Dowling640 views
Hyperdex - A closer look by DECK36
Hyperdex - A closer lookHyperdex - A closer look
Hyperdex - A closer look
DECK364.4K views
Webinar: Three Reasons Why NAS is No Good for AI and Machine Learning by Storage Switzerland
Webinar: Three Reasons Why NAS is No Good for AI and Machine LearningWebinar: Three Reasons Why NAS is No Good for AI and Machine Learning
Webinar: Three Reasons Why NAS is No Good for AI and Machine Learning
Social Networks Analysis by Joud Khattab
Social Networks AnalysisSocial Networks Analysis
Social Networks Analysis
Joud Khattab5.1K views
On-Prem Solution for the Selection of Wind Energy Models by Databricks
On-Prem Solution for the Selection of Wind Energy ModelsOn-Prem Solution for the Selection of Wind Energy Models
On-Prem Solution for the Selection of Wind Energy Models
Databricks556 views
HyperDex: A Consistent, Fault-tolerant, Searchable, Transactional NoSQL Store... by Fırat Arığ
HyperDex: A Consistent, Fault-tolerant, Searchable, Transactional NoSQL Store...HyperDex: A Consistent, Fault-tolerant, Searchable, Transactional NoSQL Store...
HyperDex: A Consistent, Fault-tolerant, Searchable, Transactional NoSQL Store...
Fırat Arığ914 views

Similar to JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide

GoSF Jan 2016 - Go Write a Plugin for Snap! by
GoSF Jan 2016 - Go Write a Plugin for Snap!GoSF Jan 2016 - Go Write a Plugin for Snap!
GoSF Jan 2016 - Go Write a Plugin for Snap!Matthew Broberg
854 views9 slides
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio by
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & AlluxioUltra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & AlluxioAlluxio, Inc.
118 views23 slides
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013 by
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013Amazon Web Services
2.4K views45 slides
Data has a better idea the in-memory data grid by
Data has a better idea   the in-memory data gridData has a better idea   the in-memory data grid
Data has a better idea the in-memory data gridBogdan Dina
50 views62 slides
Jack Gudenkauf sparkug_20151207_7 by
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf
778 views23 slides
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica by
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­ticaA noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­ticaData Con LA
2.2K views23 slides

Similar to JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide(20)

GoSF Jan 2016 - Go Write a Plugin for Snap! by Matthew Broberg
GoSF Jan 2016 - Go Write a Plugin for Snap!GoSF Jan 2016 - Go Write a Plugin for Snap!
GoSF Jan 2016 - Go Write a Plugin for Snap!
Matthew Broberg854 views
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio by Alluxio, Inc.
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & AlluxioUltra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud using Intel Analytics Zoo & Alluxio
Alluxio, Inc.118 views
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013 by Amazon Web Services
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013
Trusted Analytics as a Service (BDT209) | AWS re:Invent 2013
Amazon Web Services2.4K views
Data has a better idea the in-memory data grid by Bogdan Dina
Data has a better idea   the in-memory data gridData has a better idea   the in-memory data grid
Data has a better idea the in-memory data grid
Bogdan Dina50 views
Jack Gudenkauf sparkug_20151207_7 by Jack Gudenkauf
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf778 views
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica by Data Con LA
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­ticaA noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
A noETL Parallel Streaming Transformation Loader using Spark, Kafka­ & Ver­tica
Data Con LA2.2K views
NameNode Analytics - Querying HDFS Namespace in Real Time by Plamen Jeliazkov
NameNode Analytics - Querying HDFS Namespace in Real TimeNameNode Analytics - Querying HDFS Namespace in Real Time
NameNode Analytics - Querying HDFS Namespace in Real Time
Plamen Jeliazkov138 views
Spring One 2 GX 2014 - CACHING WITH SPRING: ADVANCED TOPICS AND BEST PRACTICES by Michael Plöd
Spring One 2 GX 2014 - CACHING WITH SPRING: ADVANCED TOPICS AND BEST PRACTICESSpring One 2 GX 2014 - CACHING WITH SPRING: ADVANCED TOPICS AND BEST PRACTICES
Spring One 2 GX 2014 - CACHING WITH SPRING: ADVANCED TOPICS AND BEST PRACTICES
Michael Plöd3.5K views
Hazelcast Deep Dive (Paris JUG-2) by Emrah Kocaman
Hazelcast Deep Dive (Paris JUG-2)Hazelcast Deep Dive (Paris JUG-2)
Hazelcast Deep Dive (Paris JUG-2)
Emrah Kocaman474 views
Accelerating Machine Learning Pipelines with Alluxio at Alluxio Meetup 2016 by Alluxio, Inc.
Accelerating Machine Learning Pipelines with Alluxio at Alluxio Meetup 2016Accelerating Machine Learning Pipelines with Alluxio at Alluxio Meetup 2016
Accelerating Machine Learning Pipelines with Alluxio at Alluxio Meetup 2016
Alluxio, Inc.8K views
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio by Alluxio, Inc.
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & AlluxioUltra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Alluxio, Inc.2.4K views
Elasticsearch quick Intro (English) by Federico Panini
Elasticsearch quick Intro (English)Elasticsearch quick Intro (English)
Elasticsearch quick Intro (English)
Federico Panini1.5K views
Red hat Storage Day LA - Designing Ceph Clusters Using Intel-Based Hardware by Red_Hat_Storage
Red hat Storage Day LA - Designing Ceph Clusters Using Intel-Based HardwareRed hat Storage Day LA - Designing Ceph Clusters Using Intel-Based Hardware
Red hat Storage Day LA - Designing Ceph Clusters Using Intel-Based Hardware
Red_Hat_Storage421 views
Scientific Computing @ Fred Hutch by Dirk Petersen
Scientific Computing @ Fred HutchScientific Computing @ Fred Hutch
Scientific Computing @ Fred Hutch
Dirk Petersen566 views
Stream Processing with CompletableFuture and Flow in Java 9 by Trayan Iliev
Stream Processing with CompletableFuture and Flow in Java 9Stream Processing with CompletableFuture and Flow in Java 9
Stream Processing with CompletableFuture and Flow in Java 9
Trayan Iliev3.1K views
IRJET - A Secure Access Policies based on Data Deduplication System by IRJET Journal
IRJET - A Secure Access Policies based on Data Deduplication SystemIRJET - A Secure Access Policies based on Data Deduplication System
IRJET - A Secure Access Policies based on Data Deduplication System
IRJET Journal8 views
GOAI: GPU-Accelerated Data Science DataSciCon 2017 by Joshua Patterson
GOAI: GPU-Accelerated Data Science DataSciCon 2017GOAI: GPU-Accelerated Data Science DataSciCon 2017
GOAI: GPU-Accelerated Data Science DataSciCon 2017
Joshua Patterson302 views
Distributed deep learning optimizations for Finance by geetachauhan
Distributed deep learning optimizations for FinanceDistributed deep learning optimizations for Finance
Distributed deep learning optimizations for Finance
geetachauhan607 views
Lecture 24 by Shani729
Lecture 24Lecture 24
Lecture 24
Shani729277 views

More from FestGroup

JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!) by
JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)
JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)FestGroup
235 views113 slides
JavaFest. Виктор Полищук. Legacy: как победить в гонке by
JavaFest. Виктор Полищук. Legacy: как победить в гонкеJavaFest. Виктор Полищук. Legacy: как победить в гонке
JavaFest. Виктор Полищук. Legacy: как победить в гонкеFestGroup
199 views62 slides
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh... by
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...FestGroup
283 views55 slides
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java Applications by
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java ApplicationsJavaFest. Philipp Krenn. Scale Elasticsearch for Your Java Applications
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java ApplicationsFestGroup
175 views54 slides
JavaFest. Денис Макогон. 6 заблуждений относительно современной Java by
JavaFest. Денис Макогон. 6 заблуждений относительно современной JavaJavaFest. Денис Макогон. 6 заблуждений относительно современной Java
JavaFest. Денис Макогон. 6 заблуждений относительно современной JavaFestGroup
176 views44 slides
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber... by
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...FestGroup
183 views39 slides

More from FestGroup(10)

JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!) by FestGroup
JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)
JavaFest. Барух Садогурский. DevOps для разработчиков (или против них?!)
FestGroup235 views
JavaFest. Виктор Полищук. Legacy: как победить в гонке by FestGroup
JavaFest. Виктор Полищук. Legacy: как победить в гонкеJavaFest. Виктор Полищук. Legacy: как победить в гонке
JavaFest. Виктор Полищук. Legacy: как победить в гонке
FestGroup199 views
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh... by FestGroup
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...
JavaFest. Cedrick Lunven. Build APIS with SpringBoot - REST, GRPC, GRAPHQL wh...
FestGroup283 views
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java Applications by FestGroup
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java ApplicationsJavaFest. Philipp Krenn. Scale Elasticsearch for Your Java Applications
JavaFest. Philipp Krenn. Scale Elasticsearch for Your Java Applications
FestGroup175 views
JavaFest. Денис Макогон. 6 заблуждений относительно современной Java by FestGroup
JavaFest. Денис Макогон. 6 заблуждений относительно современной JavaJavaFest. Денис Макогон. 6 заблуждений относительно современной Java
JavaFest. Денис Макогон. 6 заблуждений относительно современной Java
FestGroup176 views
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber... by FestGroup
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...
JavaFest. Taras Boychuk. There is always a choice. Spring Data JDBC vs. Hiber...
FestGroup183 views
JavaFest. Вадим Казулькин. Projects Valhalla, Loom and GraalVM by FestGroup
JavaFest. Вадим Казулькин. Projects Valhalla, Loom and GraalVMJavaFest. Вадим Казулькин. Projects Valhalla, Loom and GraalVM
JavaFest. Вадим Казулькин. Projects Valhalla, Loom and GraalVM
FestGroup180 views
JavaFest. Антон Лемешко. Model-Driven Development in the Open Java Universe by FestGroup
JavaFest. Антон Лемешко. Model-Driven Development in the Open Java UniverseJavaFest. Антон Лемешко. Model-Driven Development in the Open Java Universe
JavaFest. Антон Лемешко. Model-Driven Development in the Open Java Universe
FestGroup132 views
JavaFest. Дмитрий Сергеев. Data processing with Kafka Streams and Spring Fram... by FestGroup
JavaFest. Дмитрий Сергеев. Data processing with Kafka Streams and Spring Fram...JavaFest. Дмитрий Сергеев. Data processing with Kafka Streams and Spring Fram...
JavaFest. Дмитрий Сергеев. Data processing with Kafka Streams and Spring Fram...
FestGroup225 views
JavaFest. Nanne Baars. Web application security for developers by FestGroup
JavaFest. Nanne Baars. Web application security for developersJavaFest. Nanne Baars. Web application security for developers
JavaFest. Nanne Baars. Web application security for developers
FestGroup212 views

Recently uploaded

Class 10 English lesson plans by
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plansTARIQ KHAN
288 views53 slides
The basics - information, data, technology and systems.pdf by
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdfJonathanCovena1
115 views1 slide
UWP OA Week Presentation (1).pptx by
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptxJisc
88 views11 slides
Google solution challenge..pptx by
Google solution challenge..pptxGoogle solution challenge..pptx
Google solution challenge..pptxChitreshGyanani1
131 views18 slides
GSoC 2024 by
GSoC 2024GSoC 2024
GSoC 2024DeveloperStudentClub10
79 views15 slides
Psychology KS4 by
Psychology KS4Psychology KS4
Psychology KS4WestHatch
84 views4 slides

Recently uploaded(20)

Class 10 English lesson plans by TARIQ KHAN
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
TARIQ KHAN288 views
The basics - information, data, technology and systems.pdf by JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1115 views
UWP OA Week Presentation (1).pptx by Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc88 views
Psychology KS4 by WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch84 views
Class 10 English notes 23-24.pptx by TARIQ KHAN
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
TARIQ KHAN131 views
The Open Access Community Framework (OACF) 2023 (1).pptx by Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc110 views
Are we onboard yet University of Sussex.pptx by Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc96 views
When Sex Gets Complicated: Porn, Affairs, & Cybersex by Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu67 views
Drama KS5 Breakdown by WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch79 views
Classification of crude drugs.pptx by GayatriPatra14
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1486 views
AUDIENCE - BANDURA.pptx by iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood84 views
JiscOAWeek_LAIR_slides_October2023.pptx by Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc96 views
AI Tools for Business and Startups by Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov107 views
REPRESENTATION - GAUNTLET.pptx by iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood100 views

JavaFest. Grzegorz Piwowarek. Hazelcast - Hitchhiker’s Guide