Successfully reported this slideshow.

세라믹 후막 공정 기반 저온작동형 SOFC 개발

0

Share

Upcoming SlideShare
What to Upload to SlideShare
What to Upload to SlideShare
Loading in …3
×
1 of 22
1 of 22

More Related Content

Related Books

Free with a 14 day trial from Scribd

See all

세라믹 후막 공정 기반 저온작동형 SOFC 개발

  1. 1. Solid Oxide Fuel Cell (SOFC) 세라믹 후막 공정 기반 저온작동형 고체산화물 연료전지 개발 EATED 연구성과 중간 발표 Energy Materials Laboratory Department of Materials Science and Engineering 김도현, 이기윤, 박다영 Incheon national university
  2. 2. International Issue Global warming Use of Fossil Fuels Emission of Greenhouse Gases Global Warming
  3. 3. 연료의 산화에 의해 생기는 화학에너지를 직접 전기에너지로 변환시키는 친환경적인 에너지이다. 수소, 천연가스 등의 연료와 공기 중의 산소를 전기화학적으로 반응시켜 전기를 얻는 기술 Fuel Cell Future Clean Energy Chemical energy (Fuel supply) Electric energy 연료전지 (Fuel Cell) Definition Electrochemical activity
  4. 4. Soild Oxide Fuel Cell 연구 배경 General Efficiency Trends Advantages ∙ Clean ∙ High efficiency ∙ Fuel flexibility High Potential Limitation – High operation temperature Degradation Poor Long Term Stability 0 ~ 1000oC Slow Start up Time Hard to Apply Transportation High BoP Cost Sealing, Interconnects Time Consuming
  5. 5. SOFC 연구배경 - 저온작동 시, 발생하는 성능저하 기체의 활성도 감소 활성화 에너지 증가 Electrode Activity 감소 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 -Im Z (Ω cm²) Re Z (Ω cm²) 750o C 600o C 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.02 0.04 0.06 0.08 0.10 -Im Z (Ω cm²) Re Z (Ω cm²) 750o C 600o C * 750oC : 0.09Ω cm² 600oC : 1.89Ω cm² Fig. LSCF-GDC50 Half Cell Test 저온 작동 시, 성능 저하 전해질 저항 증가 𝜎 = A ∙ exp(− Ea k𝑻 ) R = l σ 𝑙 = Thickness, σ = Conductivity
  6. 6. SOFC 해결법 셀 구조 변경 전해질 지지형 금속 지지형 음극 지지형 Anode support Metal support 구성요소 미세구조 최적화 Anode Cathode Electrolyte O2 - O2- O2- High HOR Activity Porosity Thin and Dense High Ion conductivity High ORR Activity Porosity  구성요소 미세구조 제어 를 통한 더 많은 반응 면 적(TPB) 확보 • 소결온도 제어를 통한 전극, 서 포트 기공률(40%~50%) 최적화 • 조성제어를 통한 전극 촉매능 향 상  셀 구조 변경을 통한 얇고 치밀한 전해질 확보 • Support 별 Tape Casting, Dip coating 공정을 통해 얇고 치밀 한 전해질 막 구성 • 구성요소 간 TEC 차이로 인한 Delamination, 전해질 Pin-hole 현상 제어를 위한 최적의 소결조 건 정립 극복 전략
  7. 7. Characteristics based on SOFC’s structure Electrolyte-supported Anode-supported Metal-supported
  8. 8. 전해질 저항 R = 𝐥 𝛔 𝒍 = Thickness, 𝝈 = Conductivity 전해질 지지형 SOFC, 저온작동에 적합하지 않은 구조 SOFC Electrolyte supported SOFC (전해질지지체형 SOFC) Electrolyte Cathode Anode 𝒍 Easy to Crack! 전해질 이온전도도 𝝈 = 𝑨 ∙ 𝒆xp(− 𝑬𝒂 𝒌𝑻 ) • Reducing Operating Temperature, Temp ↓, 𝝈 ↓ 전해질 저항 ↑ • To compensate Performance, 𝒍 ↓ (~10um) 기계적 강도 ↓
  9. 9. TPBs(삼상계면) 확대, 우수한 전기촉매적 성능 SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) Ni YSZ • Advantages (화학적 안정) : Ni = electronic conductivity, catalytic activity + YSZ = structural frame 열팽창 호환성 개선, Ni의 결정립 조대화 방지, YSZ를 통한 전극의 이온전도도 형성 < Fig. Ni-YSZ cermet for anode>
  10. 10. SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) ▪ Tape-casting, Lamination, Co-firing ; TLC process < 그림. 평가용 연료극 지지형 SOFC 단위전지의 제작 순서도> Sintering at 1400°C for 3h (3°C/min) Tape-casting Lamination ▪ Fabrication method a) b) c) <그림. (a) 전극 및 전해질 최종 라미네이션 이후 성형체 , (b) 1400oC 3h 소결 이후 , (c) 소결체의 평탄도제어 >
  11. 11. SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) ▪ Optimizing microstructure of Ni-YSZ anode ; 기공형성제 첨가량 조절을 통한 연료극 미세구조 제어 < 그림. Ni-YSZ 연료극의 기공형성제 첨가량 제어를 통한 미세구조 제어 > < 그림. 기공형성제의 비율 및 온도에 따른 (a) 환원 전, (B) 환원 후 기공률 분포> 27.797% Ni-YSZ CB 7 wt% 32.815% Ni-YSZ CB 11 wt% 2µm X 20000 2µm X 20000 2µm X 20000 40.058% Ni-YSZ CB 15 wt%
  12. 12. SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) < 그림. illustration of anode-supported unit cells > Anode support ▪ Microstructure of Ni-YSZ anode-supported SOFC 20um X 2000 8.17um 200um X 300 362.66 um Ni-YSZ anode-support YSZ electrolyte 20um X 3000 20.25um LSM:YSZ cathode a) c) b) < 그림. SEM images of Ni-YSZ anode-supported SOFC’s thickness >
  13. 13. SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) ▪ 압력조절 및 절단 방법을 통한 단위전지 평탄도 제어 Pa 0 Pa 205 Pa 420 Cutting method Punch Punch Punch After sintering image Pa 0 Pa 205 Pa 420 Cutting method Scissors Scissors Scissors After sintering image Pa 0 Pa 205 Pa 420 Cutting method Laser cutting Laser cutting Laser cutting After sintering image ▪ Punch ▪ Scissors ▪ Laser cutting ▪ 단위전지 평탄도 제어 ; Pa 630, laser cutting a) b) c) <그림. (a) 전극 및 전해질 최종 라미네이션 이후 성형체 , (b) 1450oC 6h 소결 이후 단위전지, (c) 소결체의 평탄도제어 >
  14. 14. % SOFC Anode-supported SOFCs (연료극 지지체형 SOFC) ▪ 단위전지의 출력밀도 및 임피던스 측정 표본 <그림. YSZ 전해질의 두께 별 단위전지의 출력밀도 및 임피던스 측정 표본> <표. YSZ 전해질 두께에 따른 단위전지의 출력밀도 및 임피던스 측정 data> <그림. 얇은 전해질 층의 불균질한 수축 등으로 형성된 내부 결함> ▪ Nernst equation
  15. 15. % ASC Research plan ▪ CuO (소결소재) 첨가를 통한 YSZ전해질 sinterability 향상 <그림. SEM images of the surface of the YSZ electrolyte containing different amounts of CuO sintering aid at various firing temperatures> <그림. Cell performance (a) and ASR data (b) For the NiYSZ/YSZ/LSM-YSZ unit cell (cell 2) co-fired at temperatures ranging from 1300 to 1400 C.>
  16. 16. % Anode support AFL < Fig. illustration of anode-supported unit cells with Ni-YSZ AFL> ASC Research plan < Fig. Cross-sectional morphology of samples: (a) Anode-3 after reduction and (b) Cell-3 after electroch> Electrolyte Catalytic Electrode Particles Gas pores TPB’s ▪ Triple Phase Boundary (TPB, 삼상계면) : 기공을 통한 연료의 주입 : 산소이온 이동 : 촉매의 전자 전도 향상 < Fig. (a) total volume of the Ni-YSZ sample, (b)active and inactive TPBs>
  17. 17. % ASC 기대효과 ; 대면적화 < Fig. illustration of anode-supported unit cells with Ni-YSZ AFL>
  18. 18. SOFC 금속지지체(MS-SOFC) √Good mechanical stability √ Excellent robustness √ High electrical and thermal conductivity √ Easy processing and low-cost √ Rapid thermal cycling and start-up time √ Low operating temperature Why should Metal supported-SOFC be used? Figure.2: SEM cross-sectional view of Ni-Fe metal supported cell, co-fired at 1350℃ for 5h. Figure.1: Schematic diagram of metal supported SOFC Ni-YSZ AFL ScSZ electrolyte LSM-ScSZ cathode Ni-Fe alloy metal support 18.09㎛ 16.67㎛ 20.00㎛ 151.90㎛ Ni-Fe alloy metal support
  19. 19. SOFC Analysis of Ni-Fe alloy support Figure.3: X-ray diffraction (XRD) patterns of heat treatment NiO-Fe2O3 powder(900℃, 5h) sintering temperature 1350C 1400C Sample Metal suppport AFL electrolyte Metal suppport AFL electrolyte NiO:Fe2O3 (90:10 wt%) NiO:Fe2O3 (80:20 wt%) NiO:Fe2O3 (70:30 wt%) NiO:Fe2O3 (60:40 wt%) NiO:Fe2O3 (50:50 wt%) Table.1: Sintering metal support, support/AFL and support/AFL/electrolyte at 1350℃ and 1400℃ for 5h. NiO:Fe2O3(90:10wt%) NiO:Fe2O3(80:20wt%) NiO:Fe2O3(70:30wt%) NiO:Fe2O3(60:40wt%) NiO:Fe2O3(50:50wt%) 20 30 40 50 60 70 80 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 -6000 -4000 -2000 0 2000 4000 6000 8000 Fe2O3 NiFe2O4 NiO 2Ѳ
  20. 20. 5um SOFC Analysis of Ni-Fe alloy support Figure.4: Cross-sectional microstructure of the as-sintered porous Ni-Fe metal support : (a), (b), (c), (d) and (e) sintered at 1350℃; (f), (i), (j), (k) and (l) sintered at 1400℃. (a)NF10 (b)NF20 (c)NF30 (j)NF30 (d)NF40 (k)NF40 (e)NF50 (l)NF50 (f)NF10 (i)NF20 Sintering temperature 1350C 1400C 1350C 1400C Sample Shrinkage Porosity as-sintered as-reduced as-sintered as-reduced as-sintered as-reduced as-sintered as-reduced NiO:Fe2O3 (90:10 wt%) 25.9% 33.5%(7.6%) NiO:Fe2O3 (80:20 wt%) 26.4% 33.9%(7.5%) 42.5% NiO:Fe2O3 (70:30 wt%) 27% 29.3%(2.3%) 23.8% 31%(7.2%) 52.5% 48.8% NiO:Fe2O3 (60:40 wt%) 27.1% 30.9(3.8%) 36.5% 36.8% NiO:Fe2O3 (50:50 wt%) 27.6% 37.9%(10.3 %) 24.8% 31.5%(6.7%) 30.7% sinterability↑ Table.2: Linear shrinkage and porosity of as-sintered and as-reduced Ni-Fe metal support. 5um 5um 5um 5um 5um 5um 5um 5um 5um
  21. 21. SOFC Performance of Ni-Fe metal supported SOFC Overcoming points Lower resistance Raise Power density Expected effects Low operating temperature High electrical conductivity High thermal stability High mechanical strength 0 1 2 3 4 5 6 0 1 2 3 4 5 6 900 800 700 600 -Im(Z)/Ohm Re(Z)/Ohm Figure.5: Electrochemical performance of NiFe | Ni-YSZ | ScSZ | LSM-ScSZ single cell at 600-900oC. (a) and (c) I-V-P curves and (b) and (d) impedance spectra showed in 3% H2O/H2. 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 900 800 700 600 Voltage(V) Current density(mA/cm2 ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Power density(W/cm 2 ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 900 800 700 600 -Im(Z)/Ohm Re(Z)/Ohm 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.05 0.8 0.45 0.15 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 33003600 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 900 800 700 600 Voltage(V) Currnet density(mA/cm2 ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Power density(W/cm 2 ) 1.2 0.98 0.45 0.14 NF40 NF40 NF50 NF50 (a) (b) (c) (d) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 [Reference] Sample Substrate Cell configuration Temperature(℃) MPD(Wcm-2) Ohmic resistance(Ωcm2) Polarization resistance(Ωcm2) NF40 60:40 Ni-Fe Ni-Fe | Ni-YSZ | ScSZ | LSM-ScSZ 800 0.8 0.2 0.4 NF50 50:50 Ni-Fe Ni-Fe | Ni-YSZ | ScSZ | LSM-ScSZ 800 0.9 0.15 0.29 Reference 50:50 Ni-Fe Ni-Fe | Ni-YSZ | YSZ | GDC | GDC-LSCF 800 1.3 0.1 0.4 Table : Comparison of the performance of Ni-FE metal supported SOFC
  22. 22. 감사합니다 에너지소재연구실

Editor's Notes

  • 안녕하세요? 이번 이티드 프로그램을 통해, 저희 인천대학교 신소재공학과 에너지소재연구실에서는 세라믹 후막 공정 기반 저온작동형 고체산화물 연료전지 개발이라는 주제로 연구를 진행하였습니다. 연구성과 중간발표 시작하겠습니다
  • 인류는 현재까지 주 에너지원으로 화석 연료를 사용해 왔습니다. 화석연료 연소 시, 나오는 온실가스로로 인해 지구온난화 현상이 심해지면서 많은 환경문제가 대두되고 있습니다. 이에 따라 전 세계는 CO2 배출을 줄이기 위한 노력이 진행 중이며, 화석연료로 인해 얻는 에너지가 아닌 깨끗하고, 지속가능한 높은 효율의 에너지원으로의 패러다임 변화가 절실한 상황입니다.
  • 부분별한 화석연료 사용 , CO2 배출로 인한 지구온난연료전지는 연료의 산화반응으로 인해 생기는 화학에너지를 직접 전기에너지로 변환 시키는 장치로써, 부산물이 물 밖에 나오지 않는 친환경적인 에너지 발전 방식입니다. 연료전지의 장점은 자연환경에 따라 Yield가 달라지는 재생 에너지와 달리, 연료만 있다면 언제든지 24시간 전기를 생산할 수 있으며, 화학에너지를 기계적에너지로 변환하는 과정이 없기 때문에 내연기관 대비 높은 효율을 가진다는 점입니다.
    화 쉽지않다.
  • 그 중 SOFC는 차세대 연료전지로써, 매우 친환경적이고 열병합발전 시, 에너지 효율이 60-90%로 연료전지 중 가장 우수한 효율을 보입니다. 타 연료전지는 순수한 수소로만 발전이 가능한데 SOFC는 높은 작동온도로 인해 외부 개질기 없이 천연가스와 같은 하이드로 카본연료 사용이 가능해 연료 확보에 매우 유리하다는 장점이 있어 매우 미래가치가 높은 기술입니다.
     
    하지만 SOFC의 높은 작동온도는 상업화를 가로막는 가장 큰 요인입니다. 첫번 째로 소재가 빠르게 열화 되고 장기운용 시, 성능 감소로 이어집니다. 두번쨰로 시스템 시동 시간이 매우 오래걸립니다. 그리고 스택 시, 실링과 Interconnect 재료의 사용 가능 폭이 줄어들면서, 비싼 소재를 선택해야 하고 이로 인해 전체 시스템 비용이 올라간다는 문제점이 있습니다.

    결론적으로 SOFC의 상업화를 작동온도를 낮추어 장기 안정성을 개선시키고, 비용과 빠른 시동 시간을 갖추되, 기존의 높은 효율을 유지하는 연구가 필요합니다.

  • 하지만 SOFC 저온 작동 시, 기체의 활성도는 감소하고 유효충돌 감소로 인해 활성화에너지가 증가합니다. 이로 인해 전해질의 저항이 증가하고, 전극의 반응속도가 느려져 성능이 저하된다는 문제점이 있습니다..
  • 이러한 문제를 해결하고자 저희는 셀의 구조 변경 및 전해질 Deposition공정 최적화를 통해 더 얇고 치밀한 전해질 막을 구성하여 저온 작동 시 증가하는 전해질의 저항을 줄이고자 합니다.
    또한 SOFC 구성요소인 anode, cathode , electrolyte의 요구 물성에 따른 미세구조를 최적화하여 더 많은 반응면적 확보 및 더 높은 촉매능을 가진 전극을 개발하여 저온 작동 시, 증가하는 전극 저항을 해결하고자 하였습니다.
  • 저온 작동형 sofc는 전해질을 매우 DDIFQRP WPDJGODIGKQSLEK.
    저온 작동형 sofc는 전해질의 두께를 매우 얇게 제어해야합니다, 매우 얇은 전해질을 지지체로 사용하면 기계적 강도가 매우 취약해져, 쉽게 셀이 깨지게 됩니다. 결론적으로 전해질 지지형 sofc는 저온작동에 적합하지 않은 구조입니다.
  • ×