Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

オープンデータ活用

18 views

Published on

e-stat(政府統計情報)やRESAS(地域経済分析システム)のオープンデータの活用です。これらのオープンデータのソース、取扱い方、図表・グラフ等の具体的な活用方法を会得することで、提案力アップを目指します。

Published in: Data & Analytics
  • Be the first to comment

  • Be the first to like this

オープンデータ活用

  1. 1. 富田IT経営コンサルティング合同会社 代表社員 富田 良治 中小企業診断士、ITストラテジスト オープンデータ活用 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 1 RESAS・e-Stat(QGIS)の活用事例
  2. 2. 本日の内容 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 2 1. 自己紹介 2. オープンデータとは 3. 城南地区ランキング 4. RESAS活用事例 5. e-Stat(QGIS)活用事例 6. 質疑応答
  3. 3. 自己紹介 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 3 ■富田良治(とみた よしはる) 1976年生まれ41歳、千葉県市原市出身、東京都府中市在住 中小企業診断士、ITストラテジスト 受託開発ソフトウェア業の中小企業に16年勤務の後、2016 年末にIT経営コンサルタントとして独立。 ■所属 富田IT経営コンサルティング合同会社 代表社員 一般社団法人 データマーケティングラボラトリー 理事 一般社団法人 多摩経営工房 理事 一般社団法人 クラウドサービス推進機構 特別研究員
  4. 4. 提供サービスと実績 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 4 ■地域活性化コンサルティング ・まちづくり支援 ・商店街活性化支援 【実績】 まちゼミ支援 島しょ支援(三宅島、大島)、 地域商業調査、空き店舗調査 府中文化村、Code for Fuchu ■IT経営コンサルティング ・IT導入支援 ・クラウド活用支援 ・Web活用支援 【実績】 広告代理店ITコンサルティング 小売業・飲食業Web活用支援 製造業業務効率化支援 ■IoT導入コンサルティング ・IoT導入支援 ・IoTデータ見える化 ・IoTデータ分析 【実績】 IAクラウドプロジェクト 経産省IoTツール選定 故障予知データ分析 ■データ活用コンサルティング ・データ分析 ・オープンデータ活用 ・データ活用セミナー 【実績】 従業員満足度調査 商圏分析、需要予測分析 R講座、RESAS講座、QGIS講座 ITの知識と経験
  5. 5. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 5 オープンデータとは
  6. 6. オープンデータ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 6 誰でもアクセスできる 自由に使える (クリエイティブ・コモンズ・ライセンス) 無料
  7. 7. e-Stat 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 7 • https://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do
  8. 8. e-Stat 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 8 提供データ 国勢調査 人口動態調査 経済センサス 農林業センサス 漁業センサス 労働力調査 商業統計調査 住宅・土地統計調査 家計調査  などなど、50種類以上のデータを CSV、Excel、PDF、GIS形式でダウンロードできる
  9. 9. jSTAT MAP 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 9 • https://jstatmap.e-stat.go.jp/gis/nstac/
  10. 10. データカタログサイト(総務省) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 10 http://www.data.go.jp/
  11. 11. Open DATA METI(経産省) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 11 • http://datameti.go.jp/
  12. 12. 東京都オープンデータカタログ 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 12 http://opendata-portal.metro.tokyo.jp/www/index.html
  13. 13. 東京都オープンデータカタログ 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 13
  14. 14. 東京都オープンデータカタログ 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 14 【収録自治体】 文京区、台東区、品川区、板橋区、調布市、稲城市
  15. 15. 東京都がデータ活用事業を募集してます 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 15 なんと1事業2億円。
  16. 16. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 16 城南地区ランキング (大田区、渋谷区、品川区、世田谷区、目黒区)
  17. 17. 面積 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 17 大田区 渋谷区 品川区 世田谷区 目黒区 59.46㎢
  18. 18. 人口 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 18 大田区 渋谷区 品川区 世田谷区 目黒区 89.09万人
  19. 19. 人口密度 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 19 大田区 渋谷区 品川区 世田谷区 目黒区 1.9人/㎡
  20. 20. 製造業 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 20 大田区 渋谷区 品川区 世田谷区 目黒区 4699事業所
  21. 21. そば・うどん店 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 21 大田区 渋谷区 品川区 世田谷区 目黒区 211店
  22. 22. バー・キャバレー・ナイトクラブ 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 22 大田区 渋谷区 品川区 世田谷区 目黒区 578店
  23. 23. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 23 RESAS活用事例
  24. 24. RESASとは 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 24 https://resas.go.jp/ 産業構造や人口動態、人の流れなどの官民ビッグデータを集約し、可視化 する無料の地域経済分析システムです。 主な収録データ 政府統計データ(e-Stat) 帝国データバンク(企業間取引データ) ナビタイム(経路検索データ) NTTドコモ(モバイル空間統計) VISA(クレジットカード利用状況データ) カスタマー・コミュニケーションズ(POSデータ) グローバルブルー(免税店利用状況データ) Agoop(流動人口データ)
  25. 25. RESASメニュー 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 25 1. 人口マップ 2. 地域経済循環マップ 3. 産業構造マップ 4. 企業活動マップ 5. 観光マップ 6. まちづくりマップ 7. 雇用/医療・福祉マップ 8. 地方財政マップ 9. 企業間取引マップ(自治体向け裏メニュー)
  26. 26. RESAS活用事例 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 26 「レファレンス協同データべース」 (図書館の問い合わせ事例集) https://crd.ndl.go.jp/reference/ から実際の事例を取り上げて、 RESASを使って調査します。
  27. 27. 事例1 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 27 小金井市・国分寺市・国立市の人 口推移および人口予測が知りたい。 (嘉悦大学情報メディアセンター:kaetsu-0019)
  28. 28. 事例1 :人口推移(その1) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 28 人口マップ→将来人口統計→グラフで表示
  29. 29. 事例1 :人口推移(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 29 人口マップ→人口構成→人口推移
  30. 30. 事例2 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 30 日本の海外進出企業を調べたい。 (近畿大学中央図書館: 20130223-4 )
  31. 31. 事例2 :海外進出企業 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 31 企業活動マップ→海外取引→海外への企業進出動向
  32. 32. 事例3 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 32 各県別の理容、美容院の店舗数が 知りたい。平成8年頃の数字がよ い。 ( 埼玉県立久喜図書館:埼熊-1996-164 )
  33. 33. 事例3 :店舗数(その1) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 33 データをダウンロードす ると東京都以外のデータ もまとめて取得できる 産業構造マップ→全産業→事業所数
  34. 34. 事例3 :店舗数(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 34 まちづくりマップ→事業所立地動向
  35. 35. 事例3 :店舗数(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 35 任意の位置を選択→選択地域内の事業所一覧を見る
  36. 36. 事例3 :店舗数(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 36
  37. 37. 事例4 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 37 日本全国の入院患者数を調べたい。 (近畿大学中央図書館:20071215-1 )
  38. 38. 事例4 :入院患者数 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 38 雇用/医療・福祉マップ→医療需給
  39. 39. 事例5 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 39 訪日外国人(観光)の統計を調べた い。 (近畿大学中央図書館: 20100625-2)
  40. 40. 事例5:訪日外国人観光客分析(その1) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 40 観光マップ→外国人→外国人訪問分析
  41. 41. 事例5:訪日外国人観光客分析(その1) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 41 観光マップ→外国人→外国人訪問分析 →指定した国籍で分析する
  42. 42. 事例5:訪日外国人観光客分析(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 42 観光マップ→外国人→外国人滞在分析
  43. 43. 事例5:訪日外国人観光客分析(その2) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 43 観光マップ→外国人→外国人滞在分析→推移
  44. 44. 事例5:訪日外国人観光客分析(その3) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 44 観光マップ→外国人→外国人滞在分析
  45. 45. RESAS API 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 45
  46. 46. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 46 e-Stat活用事例
  47. 47. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 47 e-Stat活用事例(人口マップ)
  48. 48. QGISとは 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 48 ・オープンソースの地理情報システム ・地図上に情報をマッピングできる ・e-StatのGIS情報を活用できる
  49. 49. 府中市人口マップ(総数) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 49
  50. 50. 府中市人口マップ(0~19歳) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 50
  51. 51. 府中市人口マップ(20~39歳) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 51
  52. 52. 府中市人口マップ(40~59歳) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 52
  53. 53. 府中市人口マップ(60歳~) 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 53
  54. 54. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 54 e-Stat活用事例(年収マップ)
  55. 55. 東京周辺世帯年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 55  使用するオープンデータ 総務省「住宅・土地統計調査」 http://shimz.me/datavis/mimanCity/
  56. 56. 関東周辺世帯年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 56
  57. 57. 町丁別世帯年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 57 使用するオープンデータ 総務省「住宅・土地統計調査」 世帯の年間収入階級(9区分),世帯の種類(2区分),住宅の所有の関係(5区分)別普 通世帯数,1世帯当たり人員,1世帯当たり居住室数及び1世帯当たり居住室の畳 数―市区町村 総務省「国勢調査」 住居の種類・住宅の所有の関係(6区分)別一般世帯数,一般世帯人員及び1世帯 当たり人員 -町丁・字等 分析手法 回帰分析
  58. 58. 持ち家比率と世帯年収の関係 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 58 ■モデルの評価 R^2:0.9599 P < 0.001 世帯収入 = 2235.6 × 持ち家比率 – 706.7
  59. 59. 府中市世帯年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 59
  60. 60. 世田谷区推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 60 ■モデルの評価 R^2:0.9635 P < 0.001 世帯収入 = 2183.92 × 持ち家比率 – 473.23
  61. 61. 品川区推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 61 ■モデルの評価 R^2:0.8857 P < 0.002 世帯収入 = 3722.7× 持ち家比率 – 1219.8
  62. 62. 目黒区推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 62 ■モデルの評価 R^2:0.8252 P < 0.005 世帯収入 = 2837.9 × 持ち家比率 – 806.2
  63. 63. 大田区推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 63 ■モデルの評価 R^2:0.9597 P < 0.001 世帯収入 = 2161.8× 持ち家比率 – 502.6
  64. 64. 渋谷区推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 64 ■モデルの評価 R^2:0.9341 P < 0.001 世帯収入 = 2863.9 × 持ち家比率 – 683.4
  65. 65. 市原市推定年収マップ 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 65 ■モデルの評価 R^2:0.8432 P < 0.004 世帯収入 = 2792.3 × 持ち家比率 – 1477.3
  66. 66. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 66 e-Stat活用事例(商圏分析)
  67. 67. 商圏分析(半径500m) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 67
  68. 68. 商圏分析(世帯数、人数) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 68 地区 世帯数 20歳 未満 20歳~ 39歳 40歳~ 59歳 60歳 以上 北野 1丁目 704 314 380 423 217 北野 3丁目 937 423 570 686 340 北烏山 8丁目 1374 726 887 873 445 給田 5丁目 984 513 537 686 343 計 3999 1976 2374 2668 1345
  69. 69. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 69 e-Stat活用事例(潜在購買力)
  70. 70. 潜在購買力推計 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 70 使用するオープンデータ 総務省「国勢調査」 世帯人員(7区分)別一般世帯数及び一般世帯人員(6歳未満・18歳未満世帯員のいる 一般世帯-特掲)-都道府県※,市部,郡部,市町村※・旧市町村 総務省「家計調査」 1世帯当たり品目別支出金額、世帯人員・世帯主の年齢階級別、総世帯・勤労者世 帯 分析手法 QGIS + 掛け算
  71. 71. 潜在購買力推計 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 71 1.商圏の設定 商圏を半径3Km に設定
  72. 72. 潜在購買力推計 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 72 2.商圏内の特性の把握(人員別世帯数)
  73. 73. 潜在購買力推計 2017/11/2 Copyright (C) 2016 DML All Rights Reserved. 73 3.潜在購買力推計 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 肉類 魚介類 野菜・海藻 6人以上世帯 5人世帯 4人世帯 3人世帯 2人世帯 単身世帯 単位(百万円) 潜在購買力=人員別世帯数×品目別支出金額
  74. 74. まとめ 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 74 オープンデータを活用しましょう! まずはRESASで概要を把握 e-Statで一通りのデータは揃う 町丁別データは「国勢調査」 QGISで「見える化」するのが効果的
  75. 75. ちょっとだけ宣伝(その1) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 75 JISTA(日本ITストラテジスト協会)オープンフォーラム2017 【テ ー マ 】「AIとビッグデータをIT戦略に生かすための方法」 【開催日時】 2017年11月18日(土) 13:30~17:30 【会 場】 秋葉原UDX GALLERY NEXT-1 【定 員】 160人 <基調講演1> 「ECにおける「個別化」後の人工知能活用と協創の世界」 楽天株式会社 執行役員 兼 楽天技術研究所代表 森 正弥 様 <基調講演2> 「企業経営に役立つビッグデータ解析」 国立情報学研究所 情報社会相関研究系 准教授 水野 貴之 様 <JISTA会員と講演者による「データ活用相談室」※相談募集中> 【参 加 料】事前申込み(一般):2,500円、事前申込み(会員):1,500円 懇親会:6,000円 【お申込み】http://jista2017.peatix.com/
  76. 76. ちょっとだけ宣伝(その2) 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 76 TOKYOプラス ひときわ輝く商店街 東京都中小企業診断士協会 商店街研究会 27商店街の取り組みを紹介 「SNS活用による商店街活性化(仙川商店街)」
  77. 77. 本日、直売します! 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 77 定価:1,620円(税込み) 特価:1,500円(税込み)
  78. 78. 2017/11/2 Copyright (C) 2017 TITC All Rights Reserved. 78 ご清聴ありがとうございました。 http://titc.co.jp tomita@titc.co.jp yoshiharu.tomita

×