Big Social Machines: Architecture and Challenges

Srinath Srinivasa
Srinath SrinivasaProfessor at IIIT Bangalore
Big Social Machines:
Architecture and Challenges
Srinath Srinivasa
Web Science Lab
IIIT Bangalore
http://cds.iiitb.ac.in/wsl/
More data beats better algorithms...
But...
Without good models, we get insights like these..
Social Machines
Represents a class of environments comprising of interplay 
between humans and technology
Outputs of social machines a result of both human and 
algorithmic decisions
Humans as “participants” rather than users 
Humans not just use social machines for problem­solving – they are 
also used as elements of problem­solving
“The Web is an engine to create abstract social machines” – Tim 
Berners­Lee, Weaving the Web 
About Social Machines https://youtu.be/8Iz7ZqSOJGU 
Social Machines
Social Machines 
Social Machines and Interaction Machines (Open-world computing) [Wegner 97]
Output
Input
A (closed-world)
Turing Machine
computation
Hidden-variable
Single-stream
Interaction
Machine
Hidden-adversary
Multi-stream
Interaction
Machine
Social Machines
Social Machines are “open­world” systems – the environment is 
changing even as it is computing responses
They are “multi­stream” interaction machines – inputs on one 
interaction channel may become part of the response on some 
other interaction channel
Characteristic building blocks of a multi­stream interaction 
machine [Srinivasa 2001]: 
– Computation
– Persistence of state (across computations)
– Channel Sensitivity (of responses) 
Big Social Machines
Technical Challenges
Massive number of users 
Wide geographical distribution 
Significant amounts of disconnected, mobile and ad hoc operations
Human Issues
Privacy and identity management nightmare
Privileges and access control challenges 
Moral dilemmas concerning use of humans as part of the machine
Technical Challenges
Data Management Challenges
The Vs of Big Data: Volume, Variety, Velocity, Veracity
Continuous models of Consistency, Semantics extraction, and 
Transactions
Process Management Challenges
Divergent aggregation (no one problem being solved at any time)
LRC (long­running continuous) models of information logistics
An Abstract Architecture
Architectural Elements
Content Aggregation and Distribution 
Network (CADN)
Interactive nature of social machines require 
evolution of present­day CDNs into CADNs
Efficient management of human interactions 
comprising of pull and push elements
Continuous Optimization in a multi­user 
environment
Architectural Elements
CADN Example Based on Geo Hashing
Smart Traffic Social Machine
HSR area
Notifier
Hebbal area
Aggregator
BTM area
Notifier
BTM area
Notifier
Icon made by Freepik from www.flaticon.com is licensed under CC BY 3.0
Information Logistics
Getting the right information to the right 
place at the right time to the right recipient
Challenges:
Uncertainty in information requirements
Churn in information location, relevance and 
user requirements
Information Logistics
Strategic infrastructure: Distributed lookup tables [Patil 2010]
Optimality criteria
Efficiency of lookup
Robustness against
Random failures
Churn
Targeted attacks
Cost
Latency
Bookkeeping cost
Infrastructure cost
Optimal topology classes
under different constraints:
bookkeeping, lookup efficiency, infra cost
Social Machines
Business logic for Big Social Machines
Challenges:
Database semantics for long running distributed 
processes
Scalable security and access control
Consistency issues
Business Logic Challenges
Data and Consistency Challenges
Conventional relational databases may prove insufficient for 
data challenges of Big social machines
NoSQL: Useful for databases with highly skewed read/write 
ratio and/or require large amount of joins (graph queries)
Difficult to enforce ACID semantics on distributed NoSQL data 
stores
CAP theorem and the Single System Image (SSI) 
Semantics Layer
The “brain” behind the social machine
Continuously extracts semantics from operational 
details and feeds back configuration and control 
options to the lower layers
Need for an underlying data structure to represent 
operational knowledge for extracting semantics
Semantics Layer
Document vector model not very attractive:
Curse of dimensionality
Sparse vector space
Spurious features increasing dimensionality
Costly operations involving dimensionality 
reduction
Difficult to obtain precise semantic associations by 
dimensionality reduction
Semantics Layer
Proposal for a new model: Co­
occurrence graph   [Rachakonda et al. 
2014] 
Founded on Hebbian theory and 
Cognitive models of episodic and 
semantic memory
Co­occurrence represents starting 
point for mining semantics 
Reasoning across co­occurrences 
facilitated by different algorithms for 
mining different kinds of semantics
Semantics Layer
Business Logic Layer
POS tagging
Entity Resolution
Canonicalization
Semantics Layer
Semantics Layer
Episodic hypotheses
Algorithms running over the co­occurrence graph to 
extract specific semantic associations
Based on hypothesizing how episodic knowledge can 
be generalized into semantic knowledge
Example “topical anchor” hypothesis:
If a conversation/process is about topic t, then the longer 
the conversation/process is observed, the greater the 
probability of encountering t.
23
Semantics Layer
Topical Anchors: Given 
a list of noun phrases, 
identify a semantic 
topic for these terms.
Powered by Wikipedia 
co­occurrence graph 
hosted by Agama 
(graphdb developed at 
WSL)
Web APIs enable use of 
Topical Anchors in 
third party applications 
24
Semantics Layer
Topic Expansion: Given a
term, expands it into
semantically relevant topical
clusters with different
senses.
Uses co-occurrence
datasets from Wikipedia
2006 or 2011.
Web APIs enable use by
third party applications
25
Semantics Layer
Other algorithms on co­occurrence graphs 
developed at WSL:
[Rachakonda et al. 2014, Kulkarni et al. 2014a, Kulkarni et al. 2014b]
● Topical markers
● Semantic siblings
● Deep matching
● Narrative modeling (work in progress)
26
Semantics Layer
Some algorithmic techniques for mining semantics from co­
occurrence graphs:
Random walks
MCMC
Graph clustering
Centrality and PageRank based models
HITS
Gibbs Sampling
Stochastic graphical models (Markov random fields, Bayesian networks)
Spectral analysis of graph neighborhoods 
27
Conclusions
Proposal:
Abstract architecture for social machines
Challenges:
Integration of systems, data and semantic layers
Continuous, diffusive computation and systemic 
optimization
Continuous semantics extraction and semantic 
interventions
28
Thank You!
References
● SOCIAM http://www.sociam.org/
● Shadbolt, Nigel R.; Daniel A. Smith; Elena Simperl; Max Van Kleek; Yang Yang; Wendy Hall (2013). "Towards a Classification 
Framework for Social Machines" (PDF). WWW 2013 Companion. 
● Berners­Lee, Tim; J. Hendler (2009). "From the Semantic Web to social machines: A research challenge for AI on the World 
WideWeb" (PDF). Artificial Intelligence. doi:10.1016/j.artint.2009.11.010.
● Peter Wegner. 1997. Why interaction is more powerful than algorithms. Commun. ACM 40, 5 (May 1997), 80­91.
● Srinivasa, Srinath. "An algebra of fixpoints for characterizing interactive behavior of information systems." PhD diss., 
Universitätsbibliothek, Brandenburgische Technische Universitaet, Cottbus, 2001.
● Sanket Patil. Designing Optimal Network Topologies under Multiple Efficiency and Robustness Constraints. Proceedings of 
the PhD Forum at the International Conference on Distributed Computing and Networking (ICDCN 2010), Kolkata, January 
2010.
● Aditya Ramana Rachakonda, Srinath Srinivasa, Sumant Kulkarni, M S Srinivasan. A Generic Framework and Methodology 
for Extracting Semantics from Co­occurrences. Data & Knowledge Engineering, Elsevier, Volume 92, July 2014, Pages 39–59. 
DOI: 10.1016/j.datak.2014.06.002
● Sumant Kulkarni, Srinath Srinivasa. SortingHat: A Deep Matching Framework to Match Labeled Concepts. Demo Paper in 
the 20th International Conference on Management of Data (COMAD 2014), Hyderabad, India, December 2014.
● Sumant Kulkarni, Srinath Srinivasa, Jyotiska Nath Khasnabish, Karthikay Nagal, Sandeep Kurdagi. SortingHat: A 
Framework for Deep Matching Between Classes of Entities. Proceedings of 10th International Workshop on Information 
Integration on the Web (IIWeb 2014) co­located with ICDE 2014, Chicago, Illinois, USA, March 2014.
1 of 29

Recommended

AI and Telecommunication by
AI and TelecommunicationAI and Telecommunication
AI and TelecommunicationHamza Shah
3.2K views18 slides
Social Machines GSS by
Social Machines GSSSocial Machines GSS
Social Machines GSSDavid De Roure
1.2K views21 slides
Taking IT for Granted - David De Roure by
Taking IT for Granted - David De RoureTaking IT for Granted - David De Roure
Taking IT for Granted - David De RoureIT as a Utility Network+ (ITaaU)
374 views38 slides
Social Machines IIIT by
Social Machines IIITSocial Machines IIIT
Social Machines IIITDavid De Roure
2.2K views26 slides
Algorithmic Accountability & Learning Analytics (UCL) by
Algorithmic Accountability & Learning Analytics (UCL)Algorithmic Accountability & Learning Analytics (UCL)
Algorithmic Accountability & Learning Analytics (UCL)Simon Buckingham Shum
1.4K views60 slides
Open Source=Unemployment and this Rocks! from SXSW Interactive 2014 by
Open Source=Unemployment and this Rocks! from SXSW Interactive 2014 Open Source=Unemployment and this Rocks! from SXSW Interactive 2014
Open Source=Unemployment and this Rocks! from SXSW Interactive 2014 Sarah M Worthy
809 views51 slides

More Related Content

Similar to Big Social Machines: Architecture and Challenges

Platform economy roundtable 2018 by
Platform economy roundtable 2018Platform economy roundtable 2018
Platform economy roundtable 2018Tomasz Rudolf
182 views29 slides
Rethinking Multi-Agent Systems for the World-Wide Web by
Rethinking Multi-Agent Systems for the World-Wide WebRethinking Multi-Agent Systems for the World-Wide Web
Rethinking Multi-Agent Systems for the World-Wide WebAndrei Ciortea
78 views14 slides
Augmented intelligence as a response to the crisis of artificial intelligence by
Augmented intelligence as a response to the crisis of artificial intelligenceAugmented intelligence as a response to the crisis of artificial intelligence
Augmented intelligence as a response to the crisis of artificial intelligenceAlexander Ryzhov
204 views30 slides
Social Machines Democratization by
Social Machines DemocratizationSocial Machines Democratization
Social Machines DemocratizationDavid De Roure
743 views38 slides
Introduction to AI & ML by
Introduction to AI & MLIntroduction to AI & ML
Introduction to AI & MLJai Porje
190 views19 slides
Ai applications study by
Ai applications  studyAi applications  study
Ai applications studyKavita Rastogi
38 views6 slides

Similar to Big Social Machines: Architecture and Challenges(20)

Platform economy roundtable 2018 by Tomasz Rudolf
Platform economy roundtable 2018Platform economy roundtable 2018
Platform economy roundtable 2018
Tomasz Rudolf182 views
Rethinking Multi-Agent Systems for the World-Wide Web by Andrei Ciortea
Rethinking Multi-Agent Systems for the World-Wide WebRethinking Multi-Agent Systems for the World-Wide Web
Rethinking Multi-Agent Systems for the World-Wide Web
Andrei Ciortea78 views
Augmented intelligence as a response to the crisis of artificial intelligence by Alexander Ryzhov
Augmented intelligence as a response to the crisis of artificial intelligenceAugmented intelligence as a response to the crisis of artificial intelligence
Augmented intelligence as a response to the crisis of artificial intelligence
Alexander Ryzhov204 views
Social Machines Democratization by David De Roure
Social Machines DemocratizationSocial Machines Democratization
Social Machines Democratization
David De Roure743 views
Introduction to AI & ML by Jai Porje
Introduction to AI & MLIntroduction to AI & ML
Introduction to AI & ML
Jai Porje190 views
Big Data meets Big Social: Social Machines and the Semantic Web by David De Roure
Big Data meets Big Social: Social Machines and the Semantic WebBig Data meets Big Social: Social Machines and the Semantic Web
Big Data meets Big Social: Social Machines and the Semantic Web
David De Roure3.5K views
Seminar 20221027 v4.pptx by ISSIP
Seminar 20221027 v4.pptxSeminar 20221027 v4.pptx
Seminar 20221027 v4.pptx
ISSIP6 views
Automation by rviksahu
AutomationAutomation
Automation
rviksahu80 views
Social Machines - A Disruptive Technology? by David De Roure
Social Machines - A Disruptive Technology?Social Machines - A Disruptive Technology?
Social Machines - A Disruptive Technology?
David De Roure861 views
Cyber Physical Systems – Collaborating Systems of Systems by Joachim Schlosser
Cyber Physical Systems – Collaborating Systems of SystemsCyber Physical Systems – Collaborating Systems of Systems
Cyber Physical Systems – Collaborating Systems of Systems
Joachim Schlosser192 views
Smart Cities: How are they different? by PayamBarnaghi
Smart Cities: How are they different? Smart Cities: How are they different?
Smart Cities: How are they different?
PayamBarnaghi659 views
Virtual Machines in Philosophy, Engineering & Biology by wpe
Virtual Machines in Philosophy, Engineering & BiologyVirtual Machines in Philosophy, Engineering & Biology
Virtual Machines in Philosophy, Engineering & Biology
wpe1K views
8. City Science: Urban Big Data and New Urban Systems by MITEF México
8. City Science: Urban Big Data and New Urban Systems8. City Science: Urban Big Data and New Urban Systems
8. City Science: Urban Big Data and New Urban Systems
MITEF México2K views
Usability First - Introduction to User-Centered Design by @cristobalcobo
Usability First - Introduction to User-Centered DesignUsability First - Introduction to User-Centered Design
Usability First - Introduction to User-Centered Design
@cristobalcobo832 views
Automation by Mphasis
AutomationAutomation
Automation
Mphasis636 views

More from Srinath Srinivasa

AI and the sense of self by
AI and the sense of selfAI and the sense of self
AI and the sense of selfSrinath Srinivasa
207 views18 slides
Modeling sustainability in social networks by
Modeling sustainability in social networksModeling sustainability in social networks
Modeling sustainability in social networksSrinath Srinivasa
184 views39 slides
Characterizing online social cognition by
Characterizing online social cognitionCharacterizing online social cognition
Characterizing online social cognitionSrinath Srinivasa
177 views23 slides
Open ended data by
Open ended dataOpen ended data
Open ended dataSrinath Srinivasa
350 views21 slides
The Web and the Mind by
The Web and the MindThe Web and the Mind
The Web and the MindSrinath Srinivasa
1K views59 slides
Abstraction and Expression on the Web by
Abstraction and Expression on the WebAbstraction and Expression on the Web
Abstraction and Expression on the WebSrinath Srinivasa
996 views30 slides

More from Srinath Srinivasa(15)

Modeling sustainability in social networks by Srinath Srinivasa
Modeling sustainability in social networksModeling sustainability in social networks
Modeling sustainability in social networks
Srinath Srinivasa184 views
The Power Law of Social Media: What CIOs Should Know by Srinath Srinivasa
The Power Law of Social Media: What CIOs Should KnowThe Power Law of Social Media: What CIOs Should Know
The Power Law of Social Media: What CIOs Should Know
Srinath Srinivasa1.1K views
Big Data and the Semantic Web: Challenges and Opportunities by Srinath Srinivasa
Big Data and the Semantic Web: Challenges and OpportunitiesBig Data and the Semantic Web: Challenges and Opportunities
Big Data and the Semantic Web: Challenges and Opportunities
Srinath Srinivasa4.8K views
Aggregating Operational Knowledge in Community Settings by Srinath Srinivasa
Aggregating Operational Knowledge in Community SettingsAggregating Operational Knowledge in Community Settings
Aggregating Operational Knowledge in Community Settings
Srinath Srinivasa509 views
Semantics hidden within co-occurrence patterns by Srinath Srinivasa
Semantics hidden within co-occurrence patternsSemantics hidden within co-occurrence patterns
Semantics hidden within co-occurrence patterns
Srinath Srinivasa1.4K views
The open problem of open-world computing by Srinath Srinivasa
The open problem of open-world computingThe open problem of open-world computing
The open problem of open-world computing
Srinath Srinivasa1.2K views
Trends In Graph Data Management And Mining by Srinath Srinivasa
Trends In Graph Data Management And MiningTrends In Graph Data Management And Mining
Trends In Graph Data Management And Mining
Srinath Srinivasa2.8K views

Recently uploaded

IETF 118: Starlink Protocol Performance by
IETF 118: Starlink Protocol PerformanceIETF 118: Starlink Protocol Performance
IETF 118: Starlink Protocol PerformanceAPNIC
124 views22 slides
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdf by
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdfOpportunities for Youth in IG - Alena Muravska RIPE NCC.pdf
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdfRIPE NCC
9 views12 slides
OMS: Diretrizes para um controle da promoção comercial dos ditos substitutos ... by
OMS: Diretrizes para um controle da promoção comercial dos ditos substitutos ...OMS: Diretrizes para um controle da promoção comercial dos ditos substitutos ...
OMS: Diretrizes para um controle da promoção comercial dos ditos substitutos ...Prof. Marcus Renato de Carvalho
88 views24 slides
AI Powered event-driven translation bot by
AI Powered event-driven translation botAI Powered event-driven translation bot
AI Powered event-driven translation botJimmy Dahlqvist
16 views31 slides
UiPath Document Understanding_Day 3.pptx by
UiPath Document Understanding_Day 3.pptxUiPath Document Understanding_Day 3.pptx
UiPath Document Understanding_Day 3.pptxUiPathCommunity
95 views25 slides
Is Entireweb better than Google by
Is Entireweb better than GoogleIs Entireweb better than Google
Is Entireweb better than Googlesebastianthomasbejan
10 views1 slide

Recently uploaded(20)

IETF 118: Starlink Protocol Performance by APNIC
IETF 118: Starlink Protocol PerformanceIETF 118: Starlink Protocol Performance
IETF 118: Starlink Protocol Performance
APNIC124 views
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdf by RIPE NCC
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdfOpportunities for Youth in IG - Alena Muravska RIPE NCC.pdf
Opportunities for Youth in IG - Alena Muravska RIPE NCC.pdf
RIPE NCC9 views
AI Powered event-driven translation bot by Jimmy Dahlqvist
AI Powered event-driven translation botAI Powered event-driven translation bot
AI Powered event-driven translation bot
Jimmy Dahlqvist16 views
UiPath Document Understanding_Day 3.pptx by UiPathCommunity
UiPath Document Understanding_Day 3.pptxUiPath Document Understanding_Day 3.pptx
UiPath Document Understanding_Day 3.pptx
UiPathCommunity95 views
Existing documentaries (1).docx by MollyBrown86
Existing documentaries (1).docxExisting documentaries (1).docx
Existing documentaries (1).docx
MollyBrown8613 views
𝐒𝐨𝐥𝐚𝐫𝐖𝐢𝐧𝐝𝐬 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐲 by Infosec train
𝐒𝐨𝐥𝐚𝐫𝐖𝐢𝐧𝐝𝐬 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐲𝐒𝐨𝐥𝐚𝐫𝐖𝐢𝐧𝐝𝐬 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐲
𝐒𝐨𝐥𝐚𝐫𝐖𝐢𝐧𝐝𝐬 𝐂𝐚𝐬𝐞 𝐒𝐭𝐮𝐝𝐲
Infosec train7 views
Serverless cloud architecture patterns by Jimmy Dahlqvist
Serverless cloud architecture patternsServerless cloud architecture patterns
Serverless cloud architecture patterns
Jimmy Dahlqvist17 views
Building trust in our information ecosystem: who do we trust in an emergency by Tina Purnat
Building trust in our information ecosystem: who do we trust in an emergencyBuilding trust in our information ecosystem: who do we trust in an emergency
Building trust in our information ecosystem: who do we trust in an emergency
Tina Purnat85 views
PORTFOLIO 1 (Bret Michael Pepito).pdf by brejess0410
PORTFOLIO 1 (Bret Michael Pepito).pdfPORTFOLIO 1 (Bret Michael Pepito).pdf
PORTFOLIO 1 (Bret Michael Pepito).pdf
brejess04107 views
We see everywhere that many people are talking about technology.docx by ssuserc5935b
We see everywhere that many people are talking about technology.docxWe see everywhere that many people are talking about technology.docx
We see everywhere that many people are talking about technology.docx
ssuserc5935b6 views

Big Social Machines: Architecture and Challenges