Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Statistical Analysis for sports

2,130 views

Published on

  • Be the first to comment

Statistical Analysis for sports

  1. 1. Knowledge Management for UEFA Champions League By Harsha Gunnam Hetal Mehta Nargis Memon Manish Wadhwa
  2. 2. Individual Contributions Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion Tasks Harsha Hetal Nargis Manish Initial Research     Literature Review   Data Extraction     Database Creation   Coefficient Analysis   Ranking Analysis   Trend Analysis     Prediction of Winners     Testing of Results     Final Report & Presentation    
  3. 3. Agenda Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  4. 4. Introduction Objectives Process Basic Findings Introduction Sources Interesting Findings <ul><li>UEFA - The governing body of football on the continent of Europe </li></ul><ul><li>Champions League – </li></ul><ul><ul><li>Started in 1992 </li></ul></ul><ul><ul><li>Most Prestigious Trophy in the Sport </li></ul></ul><ul><ul><li>Current Champion: AC Milan </li></ul></ul><ul><li>Format – </li></ul>Future Work Conclusion UEFA Champions League Competition System 1st qualifying round 24 2nd qualifying round 16+12 3rd qualifying round 18+14 Group stage 16+16 First knock-out round 16 Quarter finals 8 Semi-finals 4 Final 2
  5. 5. Research Objectives Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  6. 6. <ul><li>Papahristodoulou, Christos, &quot;Team Performance in UEFA Champions League 2005-06.&quot; Munich Personal RePEc Archive (2006) Unpublished, Paper #138 </li></ul><ul><li>Barros, Carlos Pestana, Leach, Stephanie, “Performance evaluation of the English Premier Football League with data envelopment analysis.” Applied Economics Vol. 38 No. 12 (2006): 1449-1458 </li></ul><ul><li>http://www.betinf.com/champ.htm </li></ul><ul><ul><li>Sports Betting Information </li></ul></ul><ul><li>http://www.betstudy.com/soccer-stats/c/europe/uefa-champions-league/ </li></ul><ul><ul><li>Online Betting Guide </li></ul></ul><ul><li>http://en.uclpredictor.uefa.com/ </li></ul><ul><ul><li>Online Predictor Game </li></ul></ul>Literature Review Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  7. 7. Research Design Objectives Process Basic Findings Introduction Sources Interesting Findings Excel Data Extraction Ranking Analysis Coefficient Analysis Top 3 Leagues Top 12 Teams Array of Winners Head-to-Head Probability Home & Away Advantage UEFA Data Source Future Work Conclusion MySQL
  8. 8. <ul><li>UEFA Data Source </li></ul><ul><ul><ul><li>http://www.xs4all.nl/~kassiesa/bert/uefa/ </li></ul></ul></ul><ul><li>Data collected over 6 seasons </li></ul><ul><ul><ul><li>2002-2008 </li></ul></ul></ul><ul><li>Attributes - </li></ul>Data Sources Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  9. 9. <ul><li>Coefficient Analysis </li></ul>Basic Findings Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  10. 10. <ul><li>Standard UEFA Calculations </li></ul><ul><li>Country Coefficient = Number of Points/Number of Teams </li></ul><ul><li>Calculation Accuracy: 100% </li></ul><ul><li>Team Coefficient = Number of Points + 33% of Country Coefficient </li></ul><ul><li>Calculation Accuracy: 100% </li></ul>Coefficient Analysis Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  11. 11. <ul><li>Ranking Analysis </li></ul>Basic Findings Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  12. 12. <ul><li>Accuracy: 100% </li></ul><ul><li>Years Considered: 2003-2008 </li></ul><ul><li>Country Ranking = Summation of 5 years of Country Coefficients </li></ul><ul><li>Team Ranking = Summation of 5 years of Team Coefficients </li></ul>Predicted Ranking Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  13. 13. <ul><li>Observations: </li></ul><ul><ul><li>Spain, England and Italy: Top three leagues for the past six seasons </li></ul></ul><ul><ul><li>Romania: Rapid Improvement </li></ul></ul>Ranking Analysis - Leagues Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  14. 14. Top Leagues & Teams Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  15. 15. <ul><li>Observations: </li></ul><ul><ul><li>Consistent Team: FC Barcelona </li></ul></ul><ul><ul><li>Rapid Improvement: Chelsea </li></ul></ul>Ranking Analysis - Teams Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  16. 16. <ul><li>Probability Analysis </li></ul>Interesting Findings Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  17. 17. <ul><li>Technique: </li></ul><ul><ul><li>Naive Bayes </li></ul></ul><ul><li>Observations: </li></ul><ul><ul><li>Strength: 6 Teams </li></ul></ul><ul><ul><li>Weakness: FC Barcelona </li></ul></ul>Head-to-Head Probability Analysis Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  18. 18. <ul><li>Technique: </li></ul><ul><ul><li>Comparison of the signs of the difference between the win probability and the lose probability </li></ul></ul><ul><ul><li>Matched signs – Correct Prediction </li></ul></ul><ul><ul><li>Different signs – Incorrect Prediction </li></ul></ul><ul><li>Assumption </li></ul><ul><ul><li>Difference of zero (win-loss) favors both ways </li></ul></ul><ul><li>Accuracy: 80% </li></ul>Objectives Process Basic Findings Introduction Sources Interesting Findings Head-to-Head Probability Testing Future Work Conclusion Team Opponent 2003-07 2008 Prediction AC Milan Celtic 0.5 0 OK AC Milan Shakhtar Donetsk 1 1 OK Arsenal Sparta Praha 1 1 OK AS Roma Dinamo Kiev -1 1 NOT OK AS Roma Manchester United 0 -0.75 OK AS Roma Real Madrid -0.5 1 NOT OK Chelsea Valencia 0.5 1 OK FC Barcelona Celtic 0.5 1 OK Manchester United Olympique Lyon 0 0.5 OK Real Madrid Olympiakos Piraeus 0.5 0.5 OK
  19. 19. <ul><li>Home-Away Analysis </li></ul>Interesting Findings Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  20. 20. <ul><li>Technique: </li></ul><ul><ul><li>Mapped advantage on the basis of strength. </li></ul></ul><ul><ul><li>Strength level decided by the difference in goals scored </li></ul></ul><ul><ul><ul><li>Very Strong – Win with a difference of 2 or more goals </li></ul></ul></ul><ul><ul><ul><li>Strong – Win with a difference of 1 goal </li></ul></ul></ul><ul><ul><ul><li>Weak – Draw or lose with a difference of 1 goal </li></ul></ul></ul><ul><ul><ul><li>Very Weak – Lose with a difference of 2 or more goals </li></ul></ul></ul>Home – Away Analysis Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  21. 21. <ul><li>Observations: </li></ul><ul><ul><li>Strongest Home Team: AC Milan </li></ul></ul><ul><ul><li>Weakest Home Team: Real Madrid </li></ul></ul><ul><ul><li>Strongest Visiting Team: Liverpool </li></ul></ul><ul><ul><li>Weakest Visiting Team: Chelsea </li></ul></ul>Objectives Process Basic Findings Introduction Sources Interesting Findings Home – Away Analysis Future Work Conclusion
  22. 22. <ul><li>Winners Analysis </li></ul>Interesting Findings Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  23. 23. <ul><li>Technique: </li></ul><ul><ul><li>Assigned values to strength levels </li></ul></ul><ul><ul><li>Aggregated the values of the strength levels </li></ul></ul><ul><ul><li>Team Win Probability = (Aggregated Strength Value * Probability) / Number of Matches </li></ul></ul>Objectives Process Basic Findings Introduction Sources Interesting Findings Prediction of Winners Future Work Conclusion
  24. 24. <ul><li>Dataset considered – 2003-2007 </li></ul><ul><li>Accuracy: </li></ul><ul><ul><li>Home Win: 90% </li></ul></ul><ul><ul><li>Away Win: 100% </li></ul></ul>Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion Testing of Final Prediction
  25. 25. Conclusion Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  26. 26. Applications Future Work Applications & Future Work Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  27. 27. References Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion <ul><li>Papahristodoulou, Christos, &quot;Team Performance in UEFA Champions League 2005-06.&quot; Munich Personal RePEc Archive (2006) Unpublished, Paper #138 </li></ul><ul><li>Barros, Carlos Pestana, Leach, Stephanie, “Performance evaluation of the English Premier Football League with data envelopment analysis.” Applied Economics Vol. 38 No. 12 (2006): 1449-1458 </li></ul><ul><li>Websites: </li></ul><ul><ul><li>http://www.betinf.com/champ.htm </li></ul></ul><ul><ul><li>http://www.betstudy.com/soccer-stats/c/europe/uefa-champions-league/ </li></ul></ul><ul><ul><li>http://en.uclpredictor.uefa.com/ </li></ul></ul><ul><ul><li>http://www.uefa.com/competitions/ucl/index.html </li></ul></ul><ul><ul><li>http://en.wikipedia.org/wiki/Uefa_Champions_League </li></ul></ul><ul><ul><li>http://en.wikipedia.org/wiki/Bayes_theorem </li></ul></ul><ul><ul><li>http://www.xs4all.nl/~kassiesa/bert/uefa/ </li></ul></ul><ul><ul><li>http://www.soccerbase.com/ </li></ul></ul><ul><ul><li>http://europeancups.altervista.org/ </li></ul></ul>
  28. 28. <ul><li>Thank You </li></ul><ul><li>Dr. Hsinchun Chen </li></ul><ul><li>Yulei Zhang (Gavin) </li></ul><ul><li>Yan Dang (Mandy) </li></ul>Thank You Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  29. 29. Questions Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  30. 30. Head-to-Head Probability Analysis Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion
  31. 31. Head-to-Head Probability Analysis Objectives Process Basic Findings Introduction Sources Interesting Findings Future Work Conclusion FC Barcelona Vs Others Liverpool Vs Others

×