Smahtrforfhrwinterans2nov10

422 views

Published on

SmAHTR for 2010 ANS Winter Meeting, November 2010

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
422
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Smahtrforfhrwinterans2nov10

  1. 1. SmAHTR – the SmallModular Advanced HighTemperature ReactorPresented toANS Winter MeetingLas Vegas, NevadaNovember 7-11, 2010BySherrell GreeneDirector, Research Reactors Development ProgramsOak Ridge National Laboratorygreenesr@ornl.gov, 865.574.0626
  2. 2. Presentation overview •  SmAHTR design objectives •  Preliminary SmAHTR concept •  SmAHTR concept optimization and design trades •  Principal SmAHTR development challenges SmAHTR development is a team effort: S. R. Greene J. C. Gehin D. E. Holcomb J. J. Carbajo D. Ilas V. K. Varma A.  T. Cisneros* W. R. Corwin D. F. Wilson A. L. Qualls G. L. Yoder E. C. Bradley D. A. Clayton G. F. Flanagan M. S. Cetiner J. D. Hunn P. J. Pappano G. L. Bell F. J. Peretz2 Managed by UT-Battelle for the U.S. Department of Energy * UC–Berkeley S. R. Greene, 11 Nov 10
  3. 3. SmAHTR is the product of ORNL’s investigation of the Fluoride salt- cooled High-temperature Reactor (FHR) design space •  Reactor power level •  Physical size •  System complexity •  Operating temperature •  Fuel and core geometry •  Materials •  Economics •  Safety3 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  4. 4. SmAHTR design objectives target both electricity and process heat production •  Initial concept operating temperature of 700 ºC with future evolution path to 850 ºC and 1000 ºC •  Thermal size matched to early process heat markets •  Integral, compact system architectures •  Passive decay heat removal •  Truck transportable •  Multi-reactor systems4 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  5. 5. SmAHTR is an “entry-level” very- high-temperature reactor (VHTR) Overall System Parameters Parameter   Value   Power  (MWt  /  MWe)   125  /  50+   Primary  Coolant   LiF-­‐BeF2   Primary  Pressure  (atm)   ~1   Core  Inlet  Temperature  (ºC)   650   Core  Outlet  Temperature  (ºC)   700   Core  coolant  flow  rate  (kg/s)   1020   OperaJonal  Heat  Removal   3  –  50%  loops   Passive  Decay  Heat  Removal   3  –  50%  loops   Power  Conversion   Brayton   Reactor  Vessel  PenetraJons   None  5 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  6. 6. SmAHTR is small… AHTR SmAHTR Small Large6 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  7. 7. SmAHTR is a cartridge-core, integral-primary-system FHR (1 of 3) (1 of 3) Downcomer Skirt7 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  8. 8. SmAHTR primary system mechanical design enables rapid component servicing IHX removal DRACS Core Removal Reflector removal Removal8 Managed by UT-Battelle for the U.S. Department of Energy Note: downcomer skirt not shown S. R. Greene, 11 Nov 10
  9. 9. Four fuel assembly concepts are underconsideration (3 fixed core and pebble-bed) Solid cylindrical compact stringers Annular cylindrical compact stringers Hex-plate fuel assemblies Pebble Bed •  Cylindrical fuel assembly O.D. = 34 cm •  Plate fuel assembly O.D. = 43 cm9 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  10. 10. Cylindrical annular compacts are current SmAHTR reference fuel concept Op6on  2   SmAHTR  Fuel  /  Core  Parameter   Op6on  1   (Reference)   Op6on  3   Solid  Cylindrical   Annular  Cylindrical   Compact  Stringers   Compact  Stringers   Flat  Fuel  Plates  in   Fuel  Assembly  Design   in  Hex  Graphite   In  Hex  Graphite   Hex  ConfiguraJon   Blocks   Blocks   UCO  fuel  kernel  diameter  (microns)   425   500   500   Number  fuel  columns  or  assemblies   19   19   19   Number  fuel  pins  /  plates  per  column   72   15   12   or  fuel  element   Number  graphite  pins    or  plates  per     19   4   9   column  or  fuel  element   IniJal  Fissile  Mass  (kg)   195   357   443   Total  Heavy  Metal  (kg)   987   1806   2240   Enrichment   19.75%   19.75%   19.75%   Avg.  Power  Density  (MW/m3)   9.4     9.4   9.4   Refueling  Interval  (yr)   2.5     4.0   3.5  10 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  11. 11. SmAHTR employs a two-out-of-three approach for operational and decay heat removal11 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  12. 12. Three identical in-vessel primary heat exchangers remove operational heat Intermediate Heat Transport Loop Parameters Parameter   Value   Number  of  Primary  Heat  Exchangers  (PHX)   3   Number  PHX  needed  for  full  power  opera6on   2   PHX PHX  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell   Primary  Coolant   LiF-­‐BeF2   Primary  Inlet  Temperature  (ºC)   700   Primary  Outlet  Temperature  (ºC)   650   Primary  flow  rate  (kg/s)   350  (each)   Secondary  Coolant   LiF-­‐NaF-­‐KF   Secondary  Inlet  Temperature  (ºC)   582   Primary  Outlet  Temperature  (ºC)   610   Secondary  flow  rate  (kg/s)   800  (each)  12 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  13. 13. Three identical in-vessel heat exchangers remove post-scram decay heat In-vessel Passive Decay Heat Removal System Parameters In-­‐vessel  DRACS  HX  Parameter   Value   PHX Number  DRACS  in-­‐vessel  heat  exchangers   3   Number  DRACS  loops  needed  for  full   2   power  opera6on   DRACS  Salt-­‐to-­‐Salt  Design  Concept   Single-­‐pass,  tube-­‐in-­‐shell   Primary  Coolant   LiF-­‐BeF2   Secondary  Coolant   LiF-­‐NaF-­‐KF  13 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  14. 14. SmAHTR DRACS utilizes salt-to-air, natural convection heat rejection Ex-vessel Passive Decay Heat Removal System Parameters Ex-­‐vessel  DRACS  HX  Parameter   Value   Salt-to- FLiNaK Air Number  DRACS   3   Radiator Number  DRACS  needed  for  full  power   2   opera6ons   DRACS  Salt-­‐to-­‐Air  Design  Concept   Ver6cal  finned  tube  radiator   Primary  Coolant   LiF-­‐NaF-­‐KF   Air Air  Flow  Area  (m2)   4   In- vessel In-­‐vessel  HX  –  to  –  air  HX  riser  height  (m)   8   DRACS FLiBe HX Total  chimney  height  (m)   12   ~14 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  15. 15. SmAHTR is good match with Brayton power conversion technologies •  Options –  Standard closed –  Supercritical closed –  Open air (similar to ANP & HTRE) •  Issues to consider –  Physical size & weight –  Multi-unit clustering –  Heat exchanger pressure differentials –  Efficiency and scalability to higher temperatures –  Tritium leakage –  Compatibility with dry heat rejection •  Trade study underway15 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  16. 16. SmAHTR thermal energy storage “salt vault” enables clustering of multiple reactors •  Liquid salt vault acts as thermal battery •  Salt vault buffers –  reactors from load –  reactors from each other •  Salt selection and salt vault size can be optimized for differing applications –  125 MWt-hr storage @ 500 – 600 ºC requires ~ 13 meter cubic salt tank16 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  17. 17. Peak center-line fuel temperatures duringnormal operations are acceptable 1178°C 650°C 700°C17 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  18. 18. Peak fuel temperatures for AlphaTransient (20 s pump coast-down with10 s scram delay) only increase ~50 ºC18 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  19. 19. Two DRACS loops limit coolant temperature rise to less than 30ºC 727°C 712°C19 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  20. 20. A SmAHTR materials technology evolution strategy is in development System Element @ 700 ºC @ 850 ºC @ 1000 ºCGraphite Internals Toyo Tanso IG110 or 430 Toyo Tanso IG110 or 430 Toyo Tanso IG110 or 430Reactor Vessel Hastelloy-N • Ni-weld overlay on 800H • Interior-insulated low- • Insulated low-alloy steel alloy steel • New Ni-based alloyCore barrel & Hastelloy-N • C-C composite • C-C compositeother internals • New Ni-based alloy • SiC-SiC composite • New refractory metalControl rods and • C-C composites • C-C composites • C-C compositesinternal drives • Hastelloy-N • Nb-1Zr • Nb-1Zr • Nb-1ZrPHX & DRACS Hastelloy-N • New Ni-based alloy • C-C composite • Double-sided Ni cladding • SiC-SiC composite on 617 or 230 • Monolithic SiCSecondary (salt- Coaxial extruded 800H • New Ni-based alloy ?to-gas) HX tubes with Ni-based • Coaxial extruded 800H layer tubes with Ni-based layer20 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10
  21. 21. Summary •  SmAHTR is an “entry-level” VHTR concept –  explores the small modular FHR design space •  SmAHTR design objectives target : –  process heat production and electricity generation –  ease of transport and deployment –  long-term evolvability to higher efficiency electric generation and higher temperature process heat applications •  Present concept demonstrates feasibility and promise •  Present concept is not optimized –  Fuel / core geometry (fixed, pebble-bed, etc.) –  Power density –  Mechanical design –  Salt vault –  Conduct of operations21 Managed by UT-Battelle for the U.S. Department of Energy S. R. Greene, 11 Nov 10

×