Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Sandrine Prom Tep   Ph.D. Candidate – Marketing, HEC Montréal RBC Financial Group E-commerce Chair Partnerships co-Directo...
<ul><li>Research areas and intersections </li></ul><ul><li>How critical is usability to online services? </li></ul><ul><li...
Research areas intersections <ul><li>e-Commerce Online  </li></ul><ul><li>Consumer Behavior  </li></ul>e-Service Quality <...
Research Question « Usability is a  critical   metric for assessing the quality of a firm’s Web presence »   (Agarwal & Ve...
Research global context <ul><li>Internet  (internetworldstats.com) </li></ul><ul><ul><li>2010 US internet penetration rate...
e-Service quality <ul><li>Definition and attitudinal measures </li></ul><ul><ul><li>Quality of the user’s interaction with...
Satisfaction and task completion <ul><li>Attitudinal measure </li></ul><ul><ul><li>Satisfaction scale  (Chen et al., 2002)...
Research model Legend: EoU: ease of use; IQ: information quality; VD: visual design;  IS: information security; IP: intera...
Hypotheses <ul><li>Predicting value of quality in CB studies </li></ul><ul><ul><li>e-Service quality    Web site performa...
Methodology (1) <ul><li>Data collection </li></ul><ul><ul><ul><li>Data collected by the RBC financial group ecommerce chai...
Methodology (2) <ul><li>Subjects sample </li></ul><ul><ul><ul><li>Total N= 4144 participants  </li></ul></ul></ul><ul><ul>...
Data analysis and results (1)  <ul><li>E-service quality predicts web site performance </li></ul><ul><ul><ul><li>Web site ...
Data analysis and results (1)  <ul><li>E-service quality predicts web site performance </li></ul>Very strong correlation b...
Data analysis and results (2) <ul><li>E-service quality contributes greatly to consumer satisfaction </li></ul><ul><ul><ul...
Conclusions and implications <ul><li>Study confirms that e-service quality perception definitely impacts: </li></ul><ul><u...
Strengths, limits and future research <ul><li>Future research   </li></ul>Strengths Limits <ul><li>Very large non-student ...
Many thanks to… <ul><li>RBC Financial Group Ecommerce chair  </li></ul><ul><li>Jaques Nantel, Guy Champagne & Abdelouhab M...
Annex <ul><li>Netqu@l Scale  (Bressoles, 2004) </li></ul><ul><li>Web site satisfaction scale  (Chen et Wells, 1999) </li><...
Netqu@l scale  (Bressoles, 2004) retour
Web site satisfaction scale  (Chen et Wells, 1999) retour
Discriminant analysis (1) Classification table results Group prediction based on cross validation method
Discriminant analysis (2) Discriminant function structure Matrix
F test for e-Service quality scores (task success vs failure) retour EOU Information Qual/Quant Visual Design Information ...
Web sites by business sectors retour
Sample socio-demos retour
Upcoming SlideShare
Loading in …5
×

Beyond Usability: Ordering e-service quality factors

982 views

Published on

Applied Human Factors and Ergonomics- AHFE 2010
Miami, Florida - July 17-20, 2010

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Beyond Usability: Ordering e-service quality factors

  1. 1. Sandrine Prom Tep Ph.D. Candidate – Marketing, HEC Montréal RBC Financial Group E-commerce Chair Partnerships co-Director http://wwww.chairerbc.com Aude Dufresne Full Professor - Communications, University of Montreal LRCM Director , http://lrcm.com.umontreal.ca/dufresne/ AHFE 2010: July 20th, Miami (FA) Beyond Usability: Ordering e-Service Quality Factors
  2. 2. <ul><li>Research areas and intersections </li></ul><ul><li>How critical is usability to online services? </li></ul><ul><li>e-commerce growing importance </li></ul><ul><li>e-Service quality </li></ul><ul><li>Satisfaction and task </li></ul><ul><li>completion </li></ul><ul><li>Research model </li></ul>Presentation overview <ul><li>Hypotheses </li></ul><ul><li>Methodology </li></ul><ul><li>Data analysis and results </li></ul><ul><li>Conclusions and managerial implications </li></ul><ul><li>Strengths, limits and future research </li></ul><ul><li>Annex </li></ul>
  3. 3. Research areas intersections <ul><li>e-Commerce Online </li></ul><ul><li>Consumer Behavior </li></ul>e-Service Quality <ul><ul><li>Web site Usability </li></ul></ul><ul><ul><li>= ease of use </li></ul></ul>
  4. 4. Research Question « Usability is a critical metric for assessing the quality of a firm’s Web presence » (Agarwal & Venkatesh, 2002) <ul><li>As far as web site performance and consumer satisfaction are concerned, how critical is usability compared to other dimensions of e-service quality? </li></ul><ul><ul><ul><ul><li>Among the five components of e-Service quality examined, usability ranks 1st in predicting task success and close 2 nd in explaining consumer satisfaction </li></ul></ul></ul></ul>Q A
  5. 5. Research global context <ul><li>Internet (internetworldstats.com) </li></ul><ul><ul><li>2010 US internet penetration rate: 76,9% </li></ul></ul><ul><li>e-Commerce (Global digital economy report from BuddeComm, Oct. 2009 </li></ul><ul><ul><li>2010 US retail e-Commerce sales approx. $152 (billions) excluding travel </li></ul></ul><ul><ul><li>Steady growth (+12,7%) </li></ul></ul><ul><ul><ul><li>2010: online advertising accounts for around 13% of overall ad spending worldwide </li></ul></ul></ul><ul><ul><ul><li>2010: China’s m-Commerce market forecast: $953 million </li></ul></ul></ul><ul><li>Online consumer behavior: shoppers vs buyers (eMarketer) </li></ul><ul><ul><li>2009: 86% of Internet users are online shoppers </li></ul></ul><ul><ul><li>2010: 51% of US internet users complete their purchase online </li></ul></ul><ul><ul><ul><li>Often ignored, store sales influenced by online research are 3x higher than e-commerce sales </li></ul></ul></ul>
  6. 6. e-Service quality <ul><li>Definition and attitudinal measures </li></ul><ul><ul><li>Quality of the user’s interaction with the web site providing the online service (Hoffman and Novak, 1996) </li></ul></ul><ul><ul><li>Online service quality measured directly by consumers (i.e.; corresponds to the website users’ perception of its quality) </li></ul></ul><ul><ul><li>[email_address] : e-Service quality scale (Bressoles, 2004) </li></ul></ul><ul><ul><ul><li>19 items covering 5 factors </li></ul></ul></ul><ul><ul><ul><ul><li>Ease of Use ( Perceived usability ) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Information Quality/Quantity </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Visual Design </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Information Security </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Interaction Personnalisation </li></ul></ul></ul></ul>
  7. 7. Satisfaction and task completion <ul><li>Attitudinal measure </li></ul><ul><ul><li>Satisfaction scale (Chen et al., 2002) </li></ul></ul><ul><ul><ul><ul><li>Web site satisfaction reported by the study participants </li></ul></ul></ul></ul><ul><li>Behavioral measure </li></ul><ul><ul><li>Task completion </li></ul></ul><ul><ul><ul><ul><li>Success or Failure to complete the assigned task </li></ul></ul></ul></ul><ul><li>Subjective and objective angles of web site performance </li></ul>
  8. 8. Research model Legend: EoU: ease of use; IQ: information quality; VD: visual design; IS: information security; IP: interaction personalization.
  9. 9. Hypotheses <ul><li>Predicting value of quality in CB studies </li></ul><ul><ul><li>e-Service quality  Web site performance  Consumer satisfaction </li></ul></ul><ul><li>Specific hypothesis related to usability </li></ul><ul><ul><li>Critical nature of usability for person-system interaction/web site performance </li></ul></ul><ul><ul><ul><li> e-Service quality factor contributing the most in Web task success or failure discrimination (supported) </li></ul></ul></ul><ul><ul><ul><li> e-Service quality factor contributing the most to consumer satisfaction with Web site (not supported: usability ranks 2 nd behind Interaction personalization) </li></ul></ul></ul>
  10. 10. Methodology (1) <ul><li>Data collection </li></ul><ul><ul><ul><li>Data collected by the RBC financial group ecommerce chair for a previous study interested in comparing online shopping in various business sectors </li></ul></ul></ul><ul><ul><ul><li>From sept. 2004 through Jan. 2005 </li></ul></ul></ul><ul><ul><ul><li>Accross 21 sites which belong to 4 business sectors </li></ul></ul></ul><ul><ul><ul><li>Participants were randomly assigned to one of the sites and had to complete a research task (ex. to find the least expensive saw in the renovation sector) </li></ul></ul></ul><ul><ul><ul><li>Each participant filled out an online questionnaires after completing the task (search task answer, e-service quality dimensions, satisfaction and socio-demos) </li></ul></ul></ul><ul><ul><ul><li>Task success and failure was determined from the answers provided to the information research task </li></ul></ul></ul>
  11. 11. Methodology (2) <ul><li>Subjects sample </li></ul><ul><ul><ul><li>Total N= 4144 participants </li></ul></ul></ul><ul><ul><ul><li>Equally distributed among the 4 business sectors (financial institutions, home renovation, electronics, travel) </li></ul></ul></ul><ul><ul><ul><li>Recruited with various degrees of Internet expertise to be representative of general population through Léger Marketing Web panel </li></ul></ul></ul><ul><ul><ul><li>Not a convenience sample of students!! </li></ul></ul></ul><ul><ul><ul><li>50$ CAD monetary compensation for each test participant </li></ul></ul></ul>
  12. 12. Data analysis and results (1) <ul><li>E-service quality predicts web site performance </li></ul><ul><ul><ul><li>Web site performance: Task success and task failure (15%) </li></ul></ul></ul><ul><ul><ul><li>E-service quality factors Scores (individual and global scores) </li></ul></ul></ul><ul><ul><ul><li>Discriminant analysis: 5 e-service quality factors discriminant function is very significant (p= 0,000) </li></ul></ul></ul><ul><ul><ul><li>Results : 76,3% of the cases are correctly classified </li></ul></ul></ul><ul><ul><ul><li>74.6% successful classification by cross-validation (the most conservative computational method and greater than the chance ratio of 50% or the proportional chance criterion of 70%) </li></ul></ul></ul>
  13. 13. Data analysis and results (1) <ul><li>E-service quality predicts web site performance </li></ul>Very strong correlation between PEOU and the discriminant function : 0,898 (highest correlation among the factors)
  14. 14. Data analysis and results (2) <ul><li>E-service quality contributes greatly to consumer satisfaction </li></ul><ul><ul><ul><ul><li>Regressions: global model adjusted R2 = 76,4% </li></ul></ul></ul></ul>With PEOU explaining itself approx. 62% of the total variance, very close behind Interaction personalization (63%)
  15. 15. Conclusions and implications <ul><li>Study confirms that e-service quality perception definitely impacts: </li></ul><ul><ul><li>Web site efficiency </li></ul></ul><ul><ul><li>Consumers global satisfaction </li></ul></ul><ul><li>Study allows to order the factors of e-service quality confirming usability forefront importance </li></ul><ul><ul><li>Ranking based on contribution importance in predicting the web site performance and to consumer satisfaction </li></ul></ul><ul><li>Clear managerial implications </li></ul><ul><ul><li>All Internet storefronts should prioritize ease of use, information quality and personalization </li></ul></ul>« Current best practices call for spending about 10% of a design project's budget on usability. On average, this will more than double a website's desired quality metrics and slightly less than double an intranet's quality metrics » (in Jakob Nielsen's Alertbox, August 25, 2003: Usability 101: Introduction to Usability)
  16. 16. Strengths, limits and future research <ul><li>Future research </li></ul>Strengths Limits <ul><li>Very large non-student sample </li></ul><ul><li>4 business sectors </li></ul><ul><li>Clear managerial implications </li></ul><ul><li>Web’s fast aging data </li></ul><ul><li>Post test survey reported measures </li></ul><ul><li>Goal oriented task only </li></ul><ul><li>Experiential factor (Holbrook et Hirschman, 1982) </li></ul><ul><li>Browsing Task (hedonic vs utilitarian perspective) </li></ul><ul><li>Incorporate emotional response through physiological measures </li></ul>
  17. 17. Many thanks to… <ul><li>RBC Financial Group Ecommerce chair </li></ul><ul><li>Jaques Nantel, Guy Champagne & Abdelouhab Mekki-Berrada for granting us access to the data collected for their online shopping study </li></ul><ul><li>… you for your attention!  </li></ul>To folllow up on the discussion: [email_address] http://ca.linkedin.com/in/sandrinepromtep http://Twitter.com/SandrinePromTep
  18. 18. Annex <ul><li>Netqu@l Scale (Bressoles, 2004) </li></ul><ul><li>Web site satisfaction scale (Chen et Wells, 1999) </li></ul><ul><li>Discriminant analysis </li></ul><ul><ul><ul><ul><li>Classification table </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Discriminant function structure Matrix </li></ul></ul></ul></ul><ul><li>E-Service quality factors scores </li></ul><ul><li>List of Web sites </li></ul><ul><li>Sample Population Socio-demos </li></ul>
  19. 19. Netqu@l scale (Bressoles, 2004) retour
  20. 20. Web site satisfaction scale (Chen et Wells, 1999) retour
  21. 21. Discriminant analysis (1) Classification table results Group prediction based on cross validation method
  22. 22. Discriminant analysis (2) Discriminant function structure Matrix
  23. 23. F test for e-Service quality scores (task success vs failure) retour EOU Information Qual/Quant Visual Design Information security Interact. personalization
  24. 24. Web sites by business sectors retour
  25. 25. Sample socio-demos retour

×