Sports Physiology

16,816 views

Published on

Dra. Gomez

Published in: Health & Medicine
  • wow!!!!!! Maha bakwas
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Dr Gomez,
    very interesting. I saw the slides, no audio. How can I listed to the full presentation. Is there a follow up anywhere, trying to understand what happens when I hit the gym.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • ok
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • thanks for uploading this :)
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Encontré muy buena la presentación, Felicidades y gracias por compartirla...
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Sports Physiology

  1. 1. EXERCISE AND SPORTS PHYSIOLOGY CARINA C. GOMEZ, M.D.
  2. 2. EXERCISE PHYSIOLOGY <ul><li>is the study of the physical and chemical events that provide for the conversion of chemical energy to mechanical work. </li></ul>
  3. 3. Muscular Contraction <ul><li>major physiologic event that occurs during exercise which requires energy (ATP). </li></ul>
  4. 4. Two Types of Muscular Contraction <ul><li>Isometric Contraction </li></ul><ul><ul><li>is a static contraction in which the muscle does not shorten. </li></ul></ul><ul><li>Isotonic contraction </li></ul><ul><ul><li>is a contraction in which the force of contraction remains constant throughout the shortening. </li></ul></ul><ul><li>a) Concentric contraction </li></ul><ul><ul><ul><ul><ul><li>occurs when shortening a muscle while </li></ul></ul></ul></ul></ul><ul><li> exerting a force. </li></ul><ul><li>b) Eccentric contraction </li></ul><ul><ul><ul><ul><ul><li>occurs when lengthening a muscle while </li></ul></ul></ul></ul></ul><ul><li> resisting an external load. </li></ul>
  5. 5. Muscles in Exercise <ul><li>STRENGTH </li></ul><ul><ul><li>determined mainly by size. </li></ul></ul><ul><ul><li>maximal contractile force (3 to 4 kg/cm 2 of muscle cross-sectional area). </li></ul></ul><ul><ul><ul><li>200 cm 2 - 600 – 800 kilograms (contractile strength) </li></ul></ul></ul><ul><ul><ul><li>200 cm 2 - 840 – 1120 kilograms (holding strength) </li></ul></ul></ul>
  6. 6. <ul><li>POWER </li></ul><ul><ul><li>is a measure of the total amount of work that the muscle performs in a unit period of time. </li></ul></ul><ul><ul><li>determined by </li></ul></ul><ul><li>a) strength of contraction </li></ul><ul><li>b) distance of contraction </li></ul><ul><li>c) number of times it contracts each minute </li></ul><ul><li>First 8 to 10 seconds 7000 kg.m/min </li></ul><ul><li>Next 1 minute 4000 kg.m/min </li></ul><ul><li>Next 30 minutes 700 kg.m/min </li></ul>
  7. 7. <ul><li>ENDURANCE </li></ul><ul><ul><li>final measure of muscle performance. </li></ul></ul><ul><ul><li>depends on the nutritive support for the muscle (glycogen). </li></ul></ul><ul><ul><li> High-carbohydrate diet 240 minutes </li></ul></ul><ul><ul><li> Mixed diet 120 minutes </li></ul></ul><ul><ul><li> High-fat diet 85 minutes </li></ul></ul><ul><ul><li>Amount of glycogen stored in a muscle </li></ul></ul><ul><ul><li> High-carbohydrate diet 40 g/kg muscle </li></ul></ul><ul><ul><li>Mixed diet 20 g/kg muscle </li></ul></ul><ul><ul><li>High-fat diet 6 g/kg muscle </li></ul></ul>
  8. 8. Male versus Female athlete <ul><li>almost identical basic physiologic principles are applied for both. </li></ul><ul><li>there are quantitative differences caused by: </li></ul><ul><li>a) body size </li></ul><ul><li>b) body composition (muscle mass) </li></ul><ul><li>- pulmonary ventilation </li></ul><ul><li>- cardiac output </li></ul><ul><li>- muscle strength </li></ul><ul><li>c) amount of testosterone </li></ul><ul><li>d) amount of estrogen </li></ul><ul><li>muscle strength per cm 2 = 3 to 4 kg/cm 2 (same) </li></ul>
  9. 9. TESTOSTERONE ESTROGEN ANABOLIC EFFECT ANABOLIC EFFECT  PROTEIN DEPOSITION  FAT DEPOSITION  MUSCLE MASS  BODY FAT CONTENT  MUSCLE STRENGTH AGGRESIVENESS  MUSCLE STRENGTH MILD TEMPERAMENT
  10. 13. <ul><li>Demands Cellular and organ-system </li></ul><ul><li>adjustments </li></ul><ul><li>Metabolic Metabolic </li></ul><ul><li>Thermal Respiratory </li></ul><ul><li>Fluid Cardiovascular </li></ul><ul><li> Endocrine </li></ul>
  11. 14. Metabolic Changes <ul><li>Phosphagen System </li></ul><ul><li>Glycogen-Lactic Acid System </li></ul><ul><li>Oxidative System </li></ul>
  12. 15. Phosphagen System (8-10 sec) <ul><li>Stored ATP (3 sec) </li></ul><ul><li>ATP = adenosine ~ PO 4 - ~ PO 4 - ~ PO 4 - </li></ul><ul><li>ATP -> ADP + Pi ADP -> AMP + Pi </li></ul>7300 calories 7300 calories
  13. 16. <ul><li>Phosphocreatinine or Creatinephosphate (5-7 sec) </li></ul><ul><li>Creatine ~ PO 4 - </li></ul><ul><li>PCr + ADP -> ATP + Cr </li></ul>10,300 calories
  14. 17. Glycogen-Lactic Acid System (1.3 to 1.6 minutes) GLYCOGEN GLUCOSE ATP + PYRUVIC ACID ATP + LACTIC ACID KREB CYCLE ATP O 2 FATIGUE
  15. 18. Aerobic System ( Unlimited--nutrient) CARBOHYDRATES (glucose) PROTEINS (amino acid) FATS (fatty acid) OXYGEN ATP + CO 2 + H 2 O
  16. 19. Maximal rates of power generation (moles of ATP/min) <ul><li>Phosphagen system 4 moles of ATP/min </li></ul><ul><li>Glycogen-Lactic acid system 2.5 moles of ATP/min </li></ul><ul><li>Aerobic system 1 mole of ATP/min </li></ul>
  17. 20. Comparison for endurance <ul><li>Phosphagen system 8 – 10 seconds </li></ul><ul><li>Glycogen-Lactic Acid System 1.3 – 1.6 minutes </li></ul><ul><li>Aerobic System Unlimited </li></ul><ul><li> (as long as nutrient lasts) </li></ul>
  18. 21. Energy Systems Used in Various Sports <ul><li>Phosphagen System (almost entirely) </li></ul><ul><ul><li>100-meter dash </li></ul></ul><ul><ul><li>Jumping </li></ul></ul><ul><ul><li>Weight lifting </li></ul></ul><ul><ul><li>Diving </li></ul></ul><ul><ul><li>Football dashes </li></ul></ul>
  19. 22. <ul><li>Phosphagen and Glycogen-Lactic Acid System </li></ul><ul><ul><li>200-meter dash </li></ul></ul><ul><ul><li>Basket ball </li></ul></ul><ul><ul><li>Baseball home run </li></ul></ul><ul><ul><li>Ice hockey dashes </li></ul></ul>
  20. 23. <ul><li>Glycogen-Lactic Acid System (mainly) </li></ul><ul><ul><li>400-meter dash </li></ul></ul><ul><ul><li>100-meter swim </li></ul></ul><ul><ul><li>Tennis </li></ul></ul><ul><ul><li>Soccer </li></ul></ul>
  21. 24. <ul><li>Glycogen-Lactic Acid System and Aerobic System </li></ul><ul><ul><li>800-meter dash 2000-meter rowing </li></ul></ul><ul><ul><li>200-meter swim 1500-meterrun </li></ul></ul><ul><ul><li>1500-meter skating 1-mile run </li></ul></ul><ul><ul><li>Boxing 400-meter swim </li></ul></ul>
  22. 25. <ul><li>Aerobic System </li></ul><ul><ul><li>10,000-meter skating </li></ul></ul><ul><ul><li>Cross-country skiing </li></ul></ul><ul><ul><li>Marathon run (26.2 miles, 42.2 km) </li></ul></ul><ul><ul><li>Jogging </li></ul></ul>
  23. 26. Recovery of Muscle Metabolic System After Exercise <ul><li>Phosphocreatinine </li></ul><ul><ul><li>Stored ATP </li></ul></ul><ul><li>Glycogen-Lactic Acid System </li></ul><ul><ul><li>Phosphocreatine </li></ul></ul><ul><ul><li>Stored ATP </li></ul></ul><ul><li>Aerobic System </li></ul><ul><ul><li>Glycogen-lactic acid system </li></ul></ul><ul><ul><li>Phosphocreatine </li></ul></ul><ul><ul><li>Stored ATP </li></ul></ul>
  24. 27. <ul><li>Removal of lactic acid </li></ul><ul><ul><li>converted to pyruvic acid </li></ul></ul><ul><ul><li>reconverted to glucose in the liver </li></ul></ul>
  25. 28. Percent carbohydrate usage 0 25 50 75 100 100 75 50 25 0 0 10 20 40 2 4 1 2 3 4 High carbohydrate diet Mixed diet High-fat diet seconds minutes hours Duration of exercise Percent fat usage
  26. 29. STORED OXYGEN (2 L) <ul><li>0.5 L - air in the lungs </li></ul><ul><li>0.25 L - dissolved in the body fluids </li></ul><ul><li>1 L - combined with hemoglobin </li></ul><ul><li>0.3 L - combined with myoglobin </li></ul><ul><li>Oxygen Debt (11.5 L) </li></ul><ul><li>a) 2 liters (stored O 2 ) </li></ul><ul><li>b) 9 liters (metabolic recovery) </li></ul>
  27. 30. Two Types of Muscle Fiber <ul><li>Slow Twitch Muscle Fiber </li></ul><ul><li>Fast Twitch Muscle Fiber </li></ul>
  28. 31. Slow Twitch Fast Twitch Synonyms Type I / Oxidative Type II / Glycolytic Red Muscle White Muscle Velocity of Shortening Slow / low Fast / high Diameter Small Large Source of energy Oxidative system Phosphagen/Glycolytic System Myoglobin Abundant Few Mitochondria Abundant Few Capillary density greater Few Resistance to fatigue Resistant Prone Function Provide endurance delivers power surge for few seconds to a minute
  29. 32. <ul><li>Hereditary differences among athletes for fast-twitch versus slow-twitch muscle fibers </li></ul><ul><li> Slow Twitch Fast Twitch </li></ul><ul><li>Marathoners 82 18 </li></ul><ul><li>Swimmers 74 26 </li></ul><ul><li>Average male 45 55 </li></ul><ul><li>Weight Lifters 45 55 </li></ul><ul><li>Sprinters 37 63 </li></ul><ul><li>Jumpers 37 63 </li></ul>
  30. 33. 0 2 4 6 8 10 30 25 20 15 10 5 0 Resistive training No load training Weeks of training Percent increase in strength
  31. 34. Respiratory Changes <ul><li>Increased O 2 consumption </li></ul><ul><ul><li>Normal O 2 consumption (at rest) = 250 ml/min </li></ul></ul><ul><ul><li>During exercise </li></ul></ul><ul><ul><li>Untrained average male 3600 ml/min </li></ul></ul><ul><ul><li>Trained average male (athlete) 4000 ml/min </li></ul></ul><ul><ul><li>Male marathon runner 5100 ml/min </li></ul></ul>
  32. 35. 0 1 2 3 4 5 120 100 80 60 40 20 0 O 2 Consumption (L/min) Total Ventilation (L/min) Moderate exercise Severe exercise
  33. 36. <ul><li>Increased Pulmonary Ventilation </li></ul><ul><ul><li>At maximal exercise 100 – 110 L/min </li></ul></ul><ul><ul><li>Maximal breathing capacity 150 – 170 L/min </li></ul></ul>Provides an element of safety for athletes Exercise at high altitude Exercise under very hot environment Abnormalities in the respiratory system
  34. 37. <ul><li>Increased in VO 2 Max </li></ul><ul><ul><li>rate of O 2 usage under maximal aerobic metabolism. </li></ul></ul><ul><li>Increased Oxygen Diffusing Capacity </li></ul><ul><ul><li>rate at whichO 2 can diffuse from the pulmonary alveoli to the blood (ml/min/mmHg). </li></ul></ul>
  35. 38. Cardiovascular Changes <ul><li>Increased muscular blood flow </li></ul><ul><ul><li>resting blood flow 3.6 ml/100g/min (2-4) </li></ul></ul><ul><ul><li>during maximal exercise 90.0 ml/100g/min </li></ul></ul><ul><ul><li>initially – neurally mediated response </li></ul></ul>
  36. 39. Causes of increased blood flow <ul><li>Vasodilation (decreases vascular resistance) </li></ul><ul><ul><li>impulses in the sympathetic vasodilator system. </li></ul></ul><ul><ul><li>decrease in tonic vasoconstrictive discharge </li></ul></ul><ul><ul><li>local mechanism </li></ul></ul><ul><ul><ul><li>decrease PO 2 (hypoxia) </li></ul></ul></ul><ul><ul><ul><li>increase PCO 2 (hypercapnea) </li></ul></ul></ul><ul><ul><ul><li>accumulation of K + </li></ul></ul></ul>
  37. 40. > 10% of maximal tension - compresses blood vessels - decreases blood flow > 70% of maximal tension - blood flow completely stopped Blood flow occurs in between contractions
  38. 41. CO X TPR SV X HR F = P /  R EDV - ESV
  39. 42. <ul><li>Increased in stroke volume </li></ul><ul><ul><li>decreased in ESV </li></ul></ul><ul><ul><ul><li>increased sympathetic discharge </li></ul></ul></ul><ul><ul><ul><li>increased cardiac contractility </li></ul></ul></ul><ul><ul><ul><li>cardiac muscular hypertrophy </li></ul></ul></ul>
  40. 43. <ul><li>Increased heart rate </li></ul><ul><ul><li>Increased sympathetic discharge </li></ul></ul><ul><ul><li>Increased catecholamines </li></ul></ul><ul><ul><li>Increased body heat </li></ul></ul>
  41. 45. <ul><li>Decreased total peripheral resistance </li></ul><ul><ul><li>Vasodilatation (muscles) </li></ul></ul>
  42. 46. <ul><li>Increased in heart rate </li></ul><ul><li>Increased in stroke volume </li></ul><ul><li>Increased in cardiac output </li></ul><ul><li>Decreased total peripheral resistance </li></ul><ul><li>Increased arterial blood pressure </li></ul><ul><li>Increased in blood flow </li></ul>
  43. 47.  CO X  TPR  SV X  HR  F =  P /  R EDV -  ESV
  44. 48. Endocrine Changes <ul><li>Increased secretion of; </li></ul><ul><ul><li>Aldosterone </li></ul></ul><ul><ul><li>Cortisol </li></ul></ul><ul><ul><li>Catecholamines </li></ul></ul>
  45. 49. Thermal Changes <ul><li>Increased body heat </li></ul>
  46. 50. BLOOD FLOW TO THE SKIN FROM THE DEEP TISSUES PROVIDES HEAT TRANSFER Rate of blood flow (0 – 30% of CO
  47. 52. THANK YOU FOR LISTENING

×