Algae – The Energy Solution2


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Algae – The Energy Solution2

  1. 1. Algae  the energy solution? Algae – the energy solution? Presentation by Sebastian Olényi – ESBS, may 2009
  2. 2. The energy challenge gy g  Oil production runs  out   Climate warms due  to CO2  We need more  energy  Alternative sources  are needed   d d
  3. 3. Algae advantages g g  ‘Food vs. fuel’ becomes  food and fuel  normal crops have only a  1% photosynthetic effiency,  algae at least 5%  (presumably up to 14% in  optimum conditions)  algae have a low land  footprint, making yields of  f i   ki   i ld   f  biomass 15times higher  than for normal crops  can use saline water
  4. 4. The biofuel feedstock
  5. 5. Vast amount of possibilities p
  6. 6. Requirements for an algae startup q g p • Top algae scientists g p p • Algae production experience • Structured Programs • Strain selection • Cultivation development • Extraction • Scale‐up • Scale up • Product Development gp • Strong partner • Capacity for Technology Risk • Professional execution • Professional culture  Professional culture
  7. 7. Example process p p
  8. 8. The next steps p • Pilot facility • CO2  CO2 • Access • Competence to operate • Sales contracts • Vegetable Oil • Protein/Carbohydrates  Protein/Carbohydrates • produce ethanol, biodiesel, milk, animal feed  and  compost fertilizer p • Commercial Plant design • Commercial roll out plan
  9. 9. Challenges g  Overall challenge is to develop low‐cost high‐productivity  production systems at scale (e.g. 1000 hectares): d i       l  (    h )  Open ponds account for > 90% current worldwide  production, but > 10 times too expensive for biofuels d i  b       i     i  f  bi f l  Photobioreactors are excellent for high‐value products, but  >> 100 times too expensive for biofuels    i     i  f  bi f l  Technical challenges are mostly upstream ‐ related to algae  biology & transition from lab to outdoors
  10. 10. Lessons Learned Lessons Learned  Many microalgae can accumulate neutral lipids  All  l All algae produce lots of biomass   d  l   f bi  GMO‐engineering of algae is difficult  Diatoms and greens most promising  No perfect strain for all climates, water types
  11. 11. Harvesting algal blooms from oceans g g  not energetically or cost effective  sea water is oligotrophic have to add  nutrients like iron  low cell densities  Exception coastal lagoons, possible  contained environment  E.g. Commerically Spirulina from  Lake Texcoco and cyanobacterial blooms in Oregon ‐ again limited
  12. 12. Open‐pond approach p p pp  Biomass fast, easy and cheap C Contamination i i  Density  Harvesting
  13. 13. Bioreactor‐approach pp  GMO‐containment B Better for cold regions  f   ld  i  Controlled environment  Lipid induction  Expensive
  14. 14. So Are Microalgae a Realistic So Are Microalgae a Realistic Source of Biofuels? Source of Biofuels?  Yes  B       ill l ki  i   h  b i  R&D    k   h   But we are still lacking in the basic R&D to make them  viable  I   ill  k   i   d  It will take time and money
  15. 15. Our project? p j
  16. 16. Biology as long as possible: Biodiesel  Ability to sustain production of  high‐oil‐yielding microalgae strains high oil yielding microalgae strains  Ability to extract the oil from the  algae  Capability of converting of  microalgal oil into Biodiesel  Identifying the high‐yielding  microalgal strains i l l t i  Identifying the most optimal  methods to cultivate them th d  t   lti t  th
  17. 17. Carbon capturing p g  R&D‐head Jean‐Yves Malpote is in conseil d‘administration  Local strains are best‐fitted  Wastewater usage?
  18. 18. Project suggestion j gg  Harvest  and identify local strains from Strasbourg G Grow and select them for biomass‐production or lipid    d  l   h  f  bi d i    li id  production T   Try wastewater‐treatment  Test genetical engineering for lipid‐content enrichment