Electronica digital problemas_de_circuitos_y_sistemas_digitales

32,065 views

Published on

Published in: Education
3 Comments
27 Likes
Statistics
Notes
No Downloads
Views
Total views
32,065
On SlideShare
0
From Embeds
0
Number of Embeds
173
Actions
Shares
0
Downloads
4,007
Comments
3
Likes
27
Embeds 0
No embeds

No notes for slide

Electronica digital problemas_de_circuitos_y_sistemas_digitales

  1. 1. Y S STEMAS D G TALES Carmen Baena • Manuel Jesús Bellido • Alberto Jesús Molina María del Pilar Parra • Manuel Valencia D 1 4 C6 A B C D 7448 1 1 UA 9 o1 Q~ C Q Q 2 a$ 43 n4 n47 . v z~ R2 n, cb4 oa 1 10K B .R, ( 0 9 9 1 2 1 A 7 2 1 1 A B UN VERS DADE DE V GO B BL OTECA _ .. , 1111111111 74 3V00072350 1 F vcc
  2. 2. C- Áq7 PROBLEMAS DE C RCU TOSY S STEMAS D G TALES Carmen Baena Oliva Manuel Jesús Bellido Díaz Alberto Jesús Molina Cantero María del Pilar Parra Fernández Manuel Valencia Barrero Departamento de Tecnología Electrónica Universidad de Sevilla McGraw-Hill MADR D • BUENOS A RES • CARACAS • GUATEMALA • L SBOA • MÉX CONUEVA YORK • PANAMÁ • SAN JUAN • SANTAFÉ DE BOGOTÁ • SANT AGO • SÁO PAULO AUCKLAND • HAMBURGO • LONDRES • M LÁN • MONTREAL • NUEVA DELH • PARÍS SAN FRANC SCO • S DNEY • S NGAPUR • ST . LOU S • TOK O • TORONTO
  3. 3. TABLA DE CONTEN DOS PRÓLOGO vi¡1. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 12. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 193. ANÁL S S DE C RCU TOS COMB NAC ONALES 354. D SEÑO DE C RCU TOS COMB NAC ONALES 515. SUBS STEMAS COMB NAC ONALES 896. C RCU TOS AR TMÉT COS 1417. ANÁL S S DE C RCU TOS SECUENC ALES 1698. D SEÑO DE C RCU TOS SECUENC ALES 1979. SUBS STEMAS SECUENC ALES 22910 . MEMOR AS SEM CONDUCTORAS 26311 . NTRODUCC ÓN A LOS S STEMAS D G TALES 29112 . D SEÑO DE UN DADES DE CONTROL 32513 M SCELÁNEA 359 B BL OGRAFÍA 391 v
  4. 4. PRÓLOGOEste ejemplar es un libro de problemas resueltos en el campo del Diseño Lógico . Como tallibro de problemas ha sido concebido con la finalidad de enseñar cómo se aplican losconceptos y herramientas a casos concretos . Esto significa que nuestra atención no se centraen el desarrollo de la doctrina teórica, sino en tratar de explicar cómo interpretar enunciadosde problemas más o menos bien especificados y, empleando los conocimientos teóricosadquiridos por otras vías, resolver ese problema en particular y no otro . Como se ve, nuestrosobjetivos primarios son potenciar las capacidades de aplicación de la teoría y la de resoluciónpráctica de problemas . En cuanto a la disciplina, el término Diseño Lógico alude a materias tan bien conocidascomo son los Circuitos y Sistemas Digitales o la Teoría de Conmutación . En ella se incluyen :1) los fundamentos matemáticos usuales (álgebra de Boole, representaciones binarias de nú-meros y su aritmética, codificación binaria) ; 2) la presentación, análisis y diseño de circuitosa nivel de conmutación, tanto combinacionales como secuenciales ; y 3) la descripción y reali-zación de sistemas digitales a nivel de transferencias entre registros (RT), organizando el sis-tema como una unidad de procesado de datos y otra de control . Aunque claramente fuera delcontexto de este libro, las materias fronteras son, en el nivel inferior, el tratamiento eléctricode las puertas lógicas y, en el nivel superior, la arquitectura de computadores, así como los sis-temas multiprocesadores . La proliferación de aplicaciones y el considerable aumento de lacomplejidad experimentada por los circuitos digitales en los últimos años hacen inviable el cu-brimiento completo de esta materia . Nuestro propósito ha sido desarrollar un conjunto de pro-blemas que den soporte y fundamenten adecuadamente a todos los circuitos y técnicas de Di-seño Lógico . Nuestro libro está pensado para un primer curso de Diseño Lógico, con aplicación endiversos estudios universitarios tales como nformática (fundamentos del hardware) e ngenie-ría Electrónica (realización de sistemas digitales) . También es útil en algunos campos cientí-ficos, en concreto, los relacionados con la Teoría de Conmutación, la Teoría de Autómatas yla Aritmética del Computador . Además, al estar fuertemente enfocado a la resolución de pro-blemas, este texto también puede servir a profesionales que deseen realizar una puesta al día vi¡
  5. 5. viii PROBLEMAS DE C RCU TOS Y S STEMAS D G TALESrápida y eficiente en las realizaciones de circuitos y de sistemas digitales . El uso de este librono requiere conocimientos específicos previos ni en Electrónica, ni en Computadores, ni enMatemáticas avanzadas . Sin embargo, al ser un libro de problemas, el lector debe conocer anivel teórico los conceptos, principios y técnicas del diseño digital . En la actualidad hay dis-ponibles suficientes libros que cubren satisfactoriamente los aspectos teóricos de esta materia(véanse las referencias que citamos) . A ellos deberá acceder el lector para conocer los funda-mentos teóricos de este libro de problemas . No obstante, con el doble fin de resumir los con-ceptos más importantes y de presentar la terminología que utilizamos, en cada Capítulo hayuna pequeña presentación teórica . Además, en los problemas que introducen materias, durantesu resolución se detallan los nuevos aspectos teóricos involucrados . En la realización del libro hemos huido de los ejercicios puramente repetitivos, de losexcesivamente simples y de los de escasa entidad . Esto es debido a que, en nuestra experiencia,es claramente preferible primar el nivel de profundidad de los problemas sobre la cantidad deéstos . Por otra parte y desde un punto de vista más práctico, hemos establecido dos tipos deejercicios . En primer lugar hemos seleccionado un amplio conjunto de problemas pararesolverlos en detalle . Sobre ellos el lector aprenderá la metodología de resolución . Hemosintentado que cada aspecto importante de la materia esté cubierto por problemas biendesarrollados . Posteriormente se presenta un segundo conjunto de problemas de los que sólose ofrece la solución final . Con ello se pretende que el lector se aventure en la resolución deéstos y simplemente pueda comprobar la corrección de sus resultados . La organización elegida obedece a un cubrimiento de la materia que va de abajo a arriba(de forma similar a la metodología "bottom-up"), avanzando desde lo más simple a lo máscomplejo . En gran parte el material es autocontenido por lo que no se necesita ningúnprerrequisito . Básicamente la materia contenida en este libro de problemas está dividida en tres gran-des bloques más un Capítulo final . El primero de los bloques (Capítulos 1 al 6) corresponde acircuitos combinacionales, el segundo (Capítulos 7 al 10) a circuitos secuenciales y el último(Capítulos 11 y 12), donde se aumenta significativamente la complejidad, a los sistemas digi-tales . Dentro de cada bloque hemos ordenado los problemas procurando ordenarlos para queel lector pueda apoyarse en los ya realizados a la hora de abordar los que vengan a continua-ción . Así, cada bloque consta de varios Capítulos, cada uno de los cuales contiene problemasde una materia concreta . Los problemas de estos Capítulos han sido desarrollados procurandoque el lector vaya aprendiendo a resolverlos dentro de esa materia . Por el contrario, el últimoCapítulo está ideado con la finalidad de que el lector evalúe su nivel de conocimientos . Paraello, por una parte, los problemas no se han ordenado según la materia, de forma que el lectorno los sitúe a priori en un contexto predeterminado ; por otra, se incluyen algunos que afectana más de una unidad temática ; y, por último, se presentan todos los enunciados juntos, cadaproblema separado de su solución, con el fin de que el lector tenga que ir a buscar explícita-mente cada solución .
  6. 6. PRÓLOGO ix Concretando, la organización de este libro de problemas es como sigue : Capítulo 1 .- Aplicación de los conceptos básicos como son los sistemas de numeracióny la codificación binaria . Estos problemas están orientados a practicar con las representacionesno decimales de magnitudes y las conversiones entre las distintas bases, así como la de núme-ros con signo y fraccionarios incluyendo tanto el punto fijo como el punto flotante . Tambiénse tratan los principales códigos binarios y decimales . Capítulo 2 .- Desarrollo de los problemas relacionados con el álgebra de Boole y con elmanejo de las funciones booleanas incluyendo demostraciones de teoremas e identidades, y lasdiversas representaciones de funciones de n variables (tablas de verdad, mapas binarios y deKarnaugh) y los teoremas para dichas funciones que dan lugar a las expresiones canónicas yestándares . Capítulo 3 .- Análisis de circuitos combinacionales, tanto a nivel puramente lógico comotemporal, incluyendo técnicas específicas para el análisis de circuitos con sólo puertas NANDo NOR . Capítulo 4.- Diseño de funciones . En él se aplican técnicas de reducción para obtener lasexpresiones mínimas en suma de productos o producto de sumas (basadas en mapas de Kar-naugh y en los métodos de Quine-McCluskey y de Petrick) . Además se presta una especialatención a la obtención de los Os y los ls de una función cuando ésta se da a través de unadescripción verbal de su comportamiento . Capítulo 5.- Presentación de los subsistemas combinacionales de propósito específico,en particular los que convierten códigos binarios (decodificadores, codificadores y converti-dores de códigos) y los comparadores . También se incluyen los subsistemas de propósito ge-neral como son los multiplexores y los subsistemas programables (las memorias de sólo lectu-ra, los PLAs y los PALs) . Los subsistemas se estudian desde tres perspectivas : cómo se cons-truyen a nivel de puertas, cómo se analizan circuitos que los contienen y cómo se diseñanfunciones utilizándolos como componentes de la realización . Capítulo 6 .- Desarrollo de los problemas relacionados con la aritmética binaria . En ellosse muestran tanto las operaciones aritméticas (suma, resta, multiplicación . . .) como loscircuitos combinacionales que las realizan (sumadores, sumadores-restadores y unidadesaritmético-lógicas) . Capítulo 7 .- Presentación del biestable tanto a nivel lógico (RS, JK, D y T) como a niveltemporal (sin reloj, disparados por nivel, tipo Master-Slave y disparados por flanco) . Tambiénse aborda el análisis de circuitos secuenciales . Se desarrollan tanto los circuitos síncronos ocon una única señal de reloj, como los asíncronos, incluyendo en éstos los que operan medianteentradas asíncronas y los circuitos que poseen más de una señal de reloj .
  7. 7. x PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Capítulo 8 .- Diseño de circuitos secuenciales síncronos . Se muestran los distintos pasosdel proceso habitual de diseño, sistemático en su mayor parte, y que consigue como resultadoun circuito de coste reducido u óptimo . Algunos de los problemas van encaminados a practicarcon determinados pasos del proceso mientras que otros muestran el proceso globalmente . Capítulo 9 .- Desarrollo de los problemas de análisis de circuitos secuenciales construi-dos con contadores y registros, el diseño interno de estos dispositivos para que posean opera-ciones específicas, su realización mediante la asociación de subsistemas semejantes de menortamaño y el diseño en general de funciones secuenciales . Capítulo 10 .- Problemas de memorias semiconductoras . Básicamente están dirigidos aluso de estas memorias y a la formación de memorias "principales" por la asociación de variosde estos dispositivos (realización de mapas de memorias) . Capítulo 11 .- ntroducción al nivel de transferencia entre registros (nivel RT) y al diseñode sistemas digitales . En particular, se tratan las formas de descripción (notación RT, cartasASM y lenguaje HDL), conectándolas con los bloques de circuitos funcionales, básicamenteregistros . También se incluyen problemas sobre las técnicas de interconexión entre registrosmediante buses y la realización de unidades de datos simples cuando se conoce su operacióna nivel RT . Capítulo 12 .- Diseño de sistemas digitales completos, esto es, la unidad de datos y la decontrol . En los primeros problemas se parte de una unidad de procesado de datos conocida yhay que desarrollar una unidad de control adecuada . Finalmente se afrontan problemas dediseño completo de sistemas digitales . Capítulo 13 .- Presentación de problemas de las materias ya tratadas .
  8. 8. Capítulo 1REPRESENTAC ÓN Y COD F CAC ÓN B NAR ALos circuitos digitales operan con dos niveles de señal, la mayoría de las veces una tensión bajay otra alta . Desde el punto de vista matemático decimos que operan con señales binarias y losdos niveles se representan mediante 0 y 1 . Toda la información que ha de procesar un sistemadigital ha de expresarse mediante combinaciones de esos dos valores . En consecuencia, hayque describir cómo se representan los entes mediante 0 y 1 (codificación binaria) y, más espe-cíficamente, por ser esencial en el cálculo, cómo se representan los números .REPRESENTAC ÓN POS C ONAL DE MAGN TUDESUn sistema numérico se caracteriza por sus símbolos básicos ; estos son llamados dígitos, cadauno de los cuales representa una determinada cantidad de unidades . A su vez, cada cantidadpuede expresarse mediante una secuencia de tales dígitos . En algunos sistemas la posición ocu-pada por cada uno de los dígitos dentro de la secuencia está asociada a un valor determinado(peso) . Decimos entonces que se trata de un sistema de representación posicional . Un sistema numérico de base r es un sistema posicional de representación donde lospesos de los dígitos son potencias de r. Así, una magnitud M puede representarse en la base rde la siguiente forma : M = dn-1 d n_2 . . . d1 do . d_1 d-2 ... d_m (r n-1siendo d; un dígito de dicha base y cumpliéndose que d i e {0, 1, . . ., r-1} y M = d . r1 . j -m Para realizar cambios entre distintas bases existen diversos métodos . En este Capítulo seusan fundamentalmente los siguientes : n -1 - Para cambiar de base r a base 10, se aplica la fórmula : M = Y, d. r• . j= -m - Para cambiar de base 10 a base r, se utiliza el método de las divisiones sucesivas paraobtener la parte entera y el método de las multiplicaciones sucesivas para obtener la parte frac-cionaria . 1
  9. 9. 2 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES - Para cambiar de una base arbitraria rl a otra r 2 , se pasa en primer lugar de rl a 10 y después de 10 a r2 . - Para cambiar entre las bases 2, 8 y 16 (potencias de 2) se utiliza un método de agrupa- ción de bits . REPRESENTAC ÓN DE NÚMEROS CON S GNO De entre las notaciones existentes para expresar números con signo nos hemos centrado en las notaciones signo-magnitud, complemento a 1 y complemento a 2 . En algunos aspectos que de- tallaremos a continuación las tres notaciones son similares . Se designa un bit especial denomi- nado bit de signo (bs ) cuyo valor es 0 en números positivos y 1 en números negativos . En nú- meros positivos los demás bits representan la magnitud : A = ° n-1 a n _2 . . . al a0 . a_ 1 a_2 . . . a- m/ l T bit de signo magnitud La forma de representar los números negativos es distinta para las tres notaciones : - En la notación signo magnitud b s se hace igual a 1 y el resto de bits representan denuevo la magnitud : - A = 1 a 1 a n_2 . . . al a0 . a-1 a-2 . . .a_T 1 7 5 T bit de signo magnitud - En la notación complemento a 1, el número negativo es el complemento a 1 del co-rrespondiente número positivo : -A= Cal (A) = 1 an_ l a n _ 2 . . . al ao . a-1 a-2 . . . a_ m - En la notación complemento a 2, el número negativo es el complemento a 2 del co-rrespondiente número positivo : -m - A = Ca2(A) = Cal (A) + 2REPRESENTAC ÓN DE NÚMEROS EN PUNTO FLOTANTELa representación en punto (o coma) flotante se basa en la notación exponencial o científica .En dicha notación los números se expresan en la forma M = m x b e (m mantisa, b base, e ex-ponente) . Esto permite expresar cantidades de muy distinto tamaño de forma compacta, porejemplo, la masa del sol : 1 .989 x 1030 Kg o la carga del electrón : -1 .602 x 10 -19 C . Si se su-pone conocida la base, basta representar los valores de mantisa y exponente . Esto es lo que sehace cuando se representan números en punto flotante . Una cantidad se puede expresar de muchas formas distintas en notación exponencial, porejemplo la velocidad de la luz, c, es 3 x 10 8 m/s ó 0 .003 x 10 11 m/s ó 3000,n 10 m/s, etc . Paratrabajar con números en punto flotante se suele adoptar un convenio acerca de cuál de lasmúltiples expresiones de la forma m x be es la que se escoge . En este Capítulo trabajaremoscon mantisas cuyo dígito más significativo es "no nulo" (notación normalizada) . Por ejemplo,
  10. 10. REPRESENTAC ÓN Y COD F CAC ÓN B NAR Asupongamos que disponemos de 5 dígitos para la mantisa, representaciones normalizadas de cserían : 3 .0000 x 108 ó 3000 .0 x 105 ó 30000 x 10 4, pero no lo sería 0 .0030 x 10 11 ó0.00003 x 10 13 . Sin embargo, aún es necesario adoptar un segundo convenio para elegir unaentre las diversas representaciones normalizadas . Ese convenio se refiere a concretar cuál esla posición del punto decimal de la mantisa . En este texto se trabaja con dos convenios : - Notación fraccionaria : el punto decimal está a la izquierda del primer dígito represen-tado de la mantisa, en nuestro ejemplo : 0 .30000 x 109 . - Notación entera : el punto decimal está a la derecha del último bit representado de lamantisa, en nuestro ejemplo : 30000 x 104.COD F CAC ÓN B NAR APor codificación binaria se entiende la representación de un conjunto de entes, numéricos o nonuméricos, mediante palabras de n bits . Ahora presentaremos algunos códigos binarios de cadatipo . La conversión entre la base 2 y la base 8 ó 16 se realiza por agrupación de bits . Por ex-tensión cualquier código binario puede representarse mediante los dígitos de dichas bases . Asípodemos hablar de código octal y código hexadecimal . código código código octal hexadecimal hexadecimal 0 000 0 0000 8 0000 1 001 1 0001 9 0001 2 010 2 0010 A 0010 3 011 3 0011 B 0011 4 100 4 0100 C 0100 5 101 5 0101 D 0101 6 110 6 0110 E 0110 7 111 7 0111 F 0111 Entre los códigos más utilizados se encuentran los llamados códigos decimales . Estosasignan a cada uno de los dígitos de la base 10 una palabra binaria . Con su utilización se evitael proceso de conversión entre base 2 y base 10, aunque el número de bits precisado para ex-presar una cantidad es, en general, mayor . En la siguiente tabla se muestran algunos ejemplos : dígito decimal BCD natural BCD exceso 3 2 de 5 7 segmentos 0 0000 0011 00011 1111110 1 0001 0100 00101 0110000 2 0010 0101 00110 1101101 3 0011 0110 01001 1111001 4 0100 0111 01010 0110011 5 0101 1000 01100 1011011 6 0110 1001 10001 0011111 7 0111 1010 10010 1110000 8 1000 1011 10100 1111111 9 1001 1100 11000 1110011
  11. 11. 4 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Otro código de gran interés es el código Gray (o código reflejado) de n bits . En las siguientes tablas se muestran los casos n = 3 y n = 4 . Puede observarse en ellas la particularidad de que las palabras asignadas a dos números consecutivos se diferencian únicamente en 1 bit . Se trata por tanto de un código con distancia unidad . código código código Gray(n=3) Gray(n=4) Gray(n=4) 0 000 0 0000 8 1100 1 001 1 0001 9 1101 2 011 2 0011 10 1111 3 010 3 0010 11 1110 4 110 4 0110 12 1010 5 111 5 0111 13 1011 6 101 6 0101 14 1001 7 100 7 0100 15 1000 Como ejemplo de código alfanumérico, en este texto se usa el código ASC . Mediante este código de 7 bits es posible codificar las 26 letras del alfabeto, tanto mayúsculas como mi- núsculas, los 10 dígitos decimales, caracteres como <, @ , secuencias de control como ESC, NULL, etc . A continuación se muestran algunos ejemplos : símbolo código ASC símbolo código ASC A 1000001 1 0110001 B 1000010 0111100 a 1100001 1000000 b 1100010 ESC 0011011 0 0110000 NULL 0000000 A cualquiera de los códigos anteriores se les puede añadir un bit de paridad . El valor de dicho bit se asigna de forma que el número total de unos en la palabra sea par (hablamos entonces de bit de paridad par) o impar (hablamos entonces de bit de paridad impar) . Índice del Capítulo Este Capítulo desarrolla problemas de las siguientes materias : - Representación posicional de magnitudes . - Conversión entre bases . - Codificación binaria . - Números con signo . - Números fraccionarios en punto flotante . PROBLEMAS RESUELTOS Problema 1 .- Recientemente se ha rescatado una extrañísima nave espacial que provenía de los confines de la constelación Ophiocus . Tras múltiples esfuerzos, nuestros científicos han logrado deducir algunos datos sobre la civilización que la construyó . En vez de dos brazos, sus criaturas poseían uno sólo que terminaba en una "mano" con un número 8 de
  12. 12. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 5dedos . En un cuaderno que encontraron en la nave había escrito: "5X2 - 50X+ 125= 0 -4 X t = 8, X2 = 5" Suponiendo que tanto el sistema de numeración como las matemáticas extraterrestrestengan una historia similar a los desarrollados en la Tierra, ¿cuántos dedos (B) poseían?Solución Pl .-Debemos encontrar un sistema de numeración B en el cuál se verifique que 8 y5 son soluciones a la ecuación encontrada . En un sistema posicional de base B una secuencia de dígitos, d n_ 1 d n _2 . . . d l do, repre- n-1senta a una magnitud M si se cumple que M = d . B~ . _ -M Aplicando dicha fórmula a los coeficientes de la ecuación : 5, 50 y 125, obtenemos lasiguiente : 5 •X2 -(5 •B +0) •X +(1 •B2 +2 •B +5)=0 Sustituyendo los valores X 1 = 8 y X2 = 5 en la variable X : 5 .82-(5 •B +0) •8 +(1 •B 2+2 •B +5)=0 5 . 52 -(5 . 8+0) •5 +(1 •B2+2 •B +5)=0 Basta resolver el sistema formado por estas dos ecuaciones para encontrar que el únicovalor de B que satisface ambas es B = 13 . Por tanto, los extraterrestres de Ophiocus poseían 13dedos en su único brazo .Problema 2.- Represente posicionalmente la cantidad "dieciséis unidades" en las bases 3, 7,8 y 16.Solución P2 .- La cantidad "dieciséis unidades" en base 3 deberá cumplir (utilizando la nota-ción decimal en las operaciones) : 16= . . .+d3 . 3 3 +d 2 .3 2 +d 1 . 3 1 +1 . 3 0 +d_ 1 3 -1 + . . . con di =0,1ó2 . Para obtener los valores de los dígitos d i hay dos métodos : 1) Comprobar valores de d i hasta que la suma sea igual a la magnitud . En nuestro caso : 16=1 . 3 2 +2 . 3 1 +1 . 3 0 =121 (3 2) Mediante divisiones sucesivas para la parte entera y multiplicaciones sucesivas parala parte fraccionaria . En nuestro caso sería : do d i d2 d3 Con lo que 16 = . . .0121 (3 = 121 (3 . Nótese que sin más que sustituir el dividendo por la suma del divisor por el cociente ydel resto, se obtiene la expresión general .
  13. 13. 6 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Operando de la misma forma para los demás casos obtenemos : 16=2 . 7 1 +2 . 70 =22(7 16 = 2 . 8 1 + 0 . 80 = 20(8 16 = 1 • 16 +0 160 = 10(16 En general, "r unidades" en base r se representa 10 (r •Problema 3 .- Represente el número decimal 23 .75 en las bases 2, 5, 6, 8 y 16 .Solución P3.- Obtendremos en primer lugar la representación de la parte entera por el métodode las divisiones sucesivas . Para pasar a base 2 : 23 t v 11 v 5 ` v C_2 0 1 1 v v do d i d2 d3 d4 Por tanto : 23 (10 = 1011 l(2 gualmente para las otras bases obtenemos : 23 (10 = 43 (5 = 35 (6 = 27 (8 = 17 (16 En cuanto a la parte fraccionaria, ha de obtenerse mediante el método de las multiplica-ciones sucesivas . En el caso del paso a base 2 : 0 .75 • 2 = 1 .5 La parte entera de esta cantidad es d_ 1 ; la parte fraccionaria es la que se multiplica porla base en el paso siguiente : 0 .5 • 2 = 1 .0 La parte entera, en esta ocasión, nos da el bit d_ 2 . Como la parte fraccionaria es 0, todaslas siguientes multiplicaciones darían como resultado 0 y, por tanto, el resto de los bits(d_ 3 , d_4 , . . .) son iguales a 0 . Por tanto : 0 .75 (10 =0 .11 (2 y 23 .75 (10 = 10111 .1 l (2 Para base 5 : 0 .75 5 = 3 .75 - d_, = 3 0 .75 . 5=3 .75--> d_2=3=d_3= . . . por tanto, 23 .75 (10 = 43 .333 . . . (5 Para base 6 : 0 .75 • 6 = 4 .5 - d_ 1 = 4 0 .5 . 6=3 .0 -4d_3=3,d_4=0=d_5= . . . por tanto, 23 .75 (10 = 35 .43 6 Para base 8 : 0 .75 • 8 = 6 .0 - d_, = 6, d_ 2 = 0 = d_ 3 = . . . por tanto, 23 .75 (10 = 27 .6 (8
  14. 14. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 7 Para base 16 : 0 .75 • 16 = 12 .0 -+ d_, = 12, d_ 2 = 0 = d_3 = . . . por tanto, 23 .75 (10 = 17 .C (16Problema 4 .- Convierta los siguientes números a base 10:a) 100.111010 (2; b) 50(8, c) 101 .1(2; d) 198 F(16-Solución P4 .- Para convertir a base 10 basta sustituir el valor de la base y de los dígitos en la n-1expresión M = E d . • r1 y realizar las operaciones . j = -m 2-5 a) 100 .111010 (2 = 1 • 2 2 + 1 • 2 -1 + 1 • 2 -2 + 1 • 2-3 + 1 • = 4 .90625 (1 0 b)50 ( 8=5 • 8+0=40 (1 0 c)101 .1 (2 =1 •2 2 +1 •2 0 +1 •2 -1 =5 .5 ( 10 d) 198F(16 = 1 16 3 + 9 • 16 2 + 8 • 16 1 + 15 • 160 = 6543(, 0Problema 5.-Se cuenta que un rey, encantado con el juego, ofreció al inventor del ajedrez elpremio que desease . El inventor sólo pidió 1 grano de arroz por la primera casilla del tablero,2 granos por la segunda, 4 por la tercera y así, el doble cada vez, hasta llegar a la última ca-silla (la número 64) . Los matemáticos del reino concluyeron que no había arroz suficiente parapagar al inventor. ¿Sabría decir cuántos granos de arroz se necesitaban?Solución P5.-La cantidad pedida M es, en base 2, el número compuesto por 64 unos : 63M=1 1 . . .1 1 1 1 ya que en ese caso M=1 •20 +1 •2 1 +1 •2 2 + . . .+1 •2 Esta cantidad es una unidad menos que la representada por un 1 seguido de 64 ceros . 19Entonces : M = 264 - 1 = 1 .844674407 x 10Problema 6.- ¿ Cuántos bits son necesarios como mínimo para representar cada uno de lossiguientes números decimales? 50, 1000, 5000, 100000 y 1000000.Solución P6 .- Para calcular el número mínimo n de bits que representa la magnitud M, tenga-mos en cuenta que n ha de cumplir la siguiente desigualdad : 2n-1-1 <M<-2 n -1 El valor de n puede deducirse de dos formas : 1) A partir de la expresión n = r 192 (M + 1)1 donde [xl es el entero por exceso de x . 2) Por búsqueda en la tabla de potencias de 2 .
  15. 15. 8 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Para los números decimales propuestos tendremos : M n 50 6 1000 10 5000 13 100000 17 1000000 20 Problema 7.-Convierta el número binario 10110110011 .10110 a las bases 4, 8 y 16 ; el número 372.105 en base 8 a base 2, 4 y 16 y el número FO .A en base 16 a base 2, 4 y 8 .Solución P7 .- Para convertir un número de base 2 a base 4, basta agrupar a partir del puntofraccionario de 2 en 2 bits y convertir cada grupo a base 4 . De la misma forma, para convertira base 8 ó 16 se agrupan de tres en tres o de cuatro en cuatro bits respectivamente . Entonces : 1 01 10 11 00 11 .10 11 0 10 110 110 011 .101 10 101 1011 0011 .1011 0 1 1 2 3 0 3 . 2 3 0 (4 2 6 6 3. 5 4 (8 5 B 3. B 0 (16 Para pasar de bases 4, 8 ó 16 a base 2, se hace la descomposición inversa . Por otra parte,la conversión entre las bases 4 y 16 también se realiza de la misma forma . Sin embargo, parapasar de base 8 a base 4 ó 16, o viceversa, conviene pasar antes a base 2 . Por tanto : 372 .105 (8 = 011 111010 . 001 000 101 (2 = 3322 .020224 = FA .228( 16 F0.A( 16 = 11110000- 1010(2 = 3300 .22 (4 = 360 .50 (8Problema 8.-En la colonia humana de Ganimedes la energía se obtiene con pilas atómicasde exactamente 1 Kg de peso . Las pilas son enviadas desde Tritón en 6 cajas de 50 pilas cadauna . a) Tras un envío se avisa a Ganimedes que, por error, una de las cajas contiene pilasmalas con 1 g de menos. Deben detectarla y reenviarla a Tritón . Los operadores de Ganime-des deciden detectarla mediante una sola pesada . ¿Cómo? b) Tiempo después y tras otro envío, el aviso es que una o más cajas contienen pilasmalas con 1 g de menos . ¿Cómo podrán ahora detectar las cajas erróneas con sólo unapesada?Solución P8. a) dentifiquemos cada una de las seis cajas con una letra : caja A, caja B, caja C, caja D,caja E y caja F . Si pesamos 1 pila de la caja A, 2 de B, 3 de C, 4 de D, 5 de E y 6 de F, lacantidad de gramos que falten para un número entero de Kg indica la caja errónea . b) En este caso será necesario tomar 1 pila de A, 2 de B, 4 de C, 8 de D, 16 de E y32 de F . Con esto, el número de gramos que faltan para un número entero de Kg representados
  16. 16. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 9en base 2 indica las cajas erróneas . Por ejemplo, supongamos que las cajas erróneas son A, B,D y F : entonces, faltarán 1 + 2 + 8 + 32 = 43 g . El número 43 expresado en binario es : 101011lo que señalaría a las cajas F - D - B A .Problema 9 .- La figura representa 6 cartas con las que se pretende hacer un juego de magia .Alguien debe pensar un número y, sin decir cuál es, debe indicar las cartas donde el numeroestá presente . Conociendo sólo esto, se podrá adivinar el número pensado . Por ejemplo, siestá en las tarjetas A, D, F y G, se trata del número 75 . Sabiendo que el juego se basa en larepresentación binaria de magnitudes : a) Explíquelo . b) ¿Cómo lo cambiaría si quiere incluir hasta el número 123?¿ Ysi incluye hasta el200? 6 17 18 19 20 21 1 ,11 8 9 10 11 12 13 64 65 66 67 68 69~ "32 33 34 35 36 37~ 22 23 24 25 26 27 14 15 24 25 26 27 70 71 72 73 74 75 38 39 40 41 42 43 28 29 30 3148 49 28 29 30 31 40 41 76 77 78 79 80 81 44 45 46 47 48 49 50 51 52 53 54 55 42 43 44 45 46 47 82 83 84 85 86 87 50 51 52 53 54 55 565758596061 56 57 58 59 60 61 88 89 90 91 92 93 565758596061 62 63 80 81 82 83 62 63 72 73 74 75 94 95 96 97 98 99 62 63 96 97 98 99 84 85 86 87 88 89 76 77 78 79 88 89 A B 90 91 92 93 94 95 90 91 92 93 94 95~ ~45671213 "~ %23671011 1357911 14 15 20 21 22 23 14 15 18 19 22 23 13 15 17 19 21 23 28 29 30 31 36 37 26 27 30 31 34 35 25 27 29 31 33 35 38 39 44 45 46 47 38 39 42 43 46 47 37 39 41 43 45 47 52 53 54 55 60 61 50 51 54 55 58 59 49 51 53 55 57 59 626368697071 626366677071 61 63 65 67 69 71 76 77 78 79 84 85 74 75 78 79 82 83 73 75 77 79 81 83 86 87 92 93 94 95 86 87 90 91 94 95 85 87 89 91 93 95 98 99 97 99Solución P9. a) El mayor número, el 99, se representa en binario con 7 bits, concretamente como99 (2 = 1100011 . De aquí que haya 7 tarjetas (A, B, C, . . ., G) cada una encabezada por una potencia de 2(2 6 = 64 para A, 25 = 32 para B, 2 4 = 16 para C, etc) . El resto de números en cada tarjeta sonaquellos cuya representación en base 2 contiene un 1 en la posición de la potencia correspon-diente a la tarjeta . Así el 99 estará en las tarjetas A, B, F y G pero no en las otras . El número75 (= 64 + 8 + 2 + 1) estará sólo en las tarjetas A, D, F y G ; etc . b) El 123 precisa también 7 bits por lo que no hay que aumentar el número de tarjetas .A cada una de éstas habría que incorporar los nuevos números (del 100 al 123) de la formaexplicada antes ; por ejemplo : el 111 (10 = 1101111 (2 se incorporaría a A, B, D, E, F y G .
  17. 17. 10 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Para añadir hasta el 200 se necesitaría una nueva tarjeta encabezada por 128 = 27 , ya quepara representar números mayores de 128 se precisan 8 bits .Problema 10.- Represente el 6 en los siguientes casos: • Código Gray asumiendo que se representan del 0 al 7. • Código Gray asumiendo que se representan del 0 al 9 . c) Código Gray asumiendo que se representan del 0 al 15 . • En código ASC . • En código ASC con paridad par. f) En código ASC con paridad impar. • En código "2-out-of-5" .Solución P10 .- El código Gray es un código reflejado de distancia unidad que utiliza elmínimo número de bits necesarios . La distancia unidad implica que dos números consecutivostienen códigos adyacentes (sólo se diferencian en un bit) . Por otra parte, el ser un códigoreflejado, implica simetría respecto a la mitad de los números representados, con lo que, dosnúmeros simétricos tienen códigos adyacentes . a) Para representar los números del 0 al 7 necesitaremos 3 bits . Por tanto, el código Grayserá : 000 001 011 010 110 111 101 100 0 1 2 3 4 5 6 7 (eje de simetría) b) y c) Para representar tanto los diez números del 0 al 9, como los 16 números del 0 al15 se necesitan 4 bits, con lo que el código Gray a utilizar es el de 4 bits . Al ser un código re-flejado, para asignar valores del código a los diez números (0-9) lo haremos con los 10 códigoscentrales, tal como se muestra . En la codificación de los 16 números (0-15) ocupamos los 16códigos existentes . 0000 0001 0011 0010 0110 0111 10101 0100 1100 1101 1111 1110 1010 1011 1001 1000 b) - 0 1 2 3 4 5 6 7 8 9 - c) 0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 (eje de simetría) d) El código ASC consta de 7 bits y representa 26 letras minúsculas, 26 letras mayús-culas, 10 dígitos decimales, 32 caracteres especiales y 34 comandos . La codificación procedede un convenio y, en concreto, el código del 6 es 0110110 que, expresado en código hexade-cimal, es $36 . e) Para un código de n bits, incluir la paridad supone añadir 1 bit adicional a los n ante-riores que se llama bit de paridad . Su fin es hacer que el número total de unos en el código
  18. 18. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 11(ahora de n + 1 bits) sea par en el caso de paridad par o impar en el caso de paridad impar . La posición del bit de paridad es convenida previamente ; por ejemplo, ponemos el bitde paridad en primer lugar . El código ASC de paridad par para el 6 será 00110110 (añadimos un 0 para tener untotal de cuatro unos) . En hexadecimal será $36 . f) El código ASC de paridad impar para el 6 será 10110110 (añadimos un 1 para tenerun total de cinco unos) . En hexadecimal, $B6 . g) El código 2-out-of-5 representa los 10 dígitos decimales mediante 5 bits de los quetres son 0 y dos son 1 . La codificación es la mostrada a continuación : número código 0 00011 1 00101 2 00110 3 01001 4 01010 5 01100 6 10001 7 10010 8 10100 9 11000Problema 11 .- Determine el bit de paridad impar para cada uno de los 10 dígitos decimalesen el código 8, 4, -2, -1 .Solución P11 .-En la siguiente tabla, se muestra la codificación para cada dígito decimal en elcódigo pesado 8, 4, -2, -1, junto con el bit de paridad que hay que generar para que en cadadígito haya un número impar de 1 . dígito 84-2-1 P 0 0000 1 1 0111 0 2 0110 1 3 0101 1 4 0100 0 5 1011 0 6 1010 1 7 1001 1 8 1000 0 9 1111 1
  19. 19. 12 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES Problema 12.- Obtenga el complemento a 1 y a 2 de los siguientes números binarios : 1010101, 0111000, 0000001, 10000, 00000 .Solución P12 .- Dado B = b n- 1 b n _2 . . .b 1 b 0 se obtienen su complementos a 1 y a 2 . El complemento a 1 se obtiene como Cal(B) = bn-1bn-2 . . . blbo El complemento a 2 puede obtenerse de dos formas : sumando 1 al complemento a 1 (yaque Ca2(B) = Cal (B) + 1) ó dejando iguales todos los bits menos significativos hasta llegar alprimer bit igual a 1 (que también se deja igual) y complementando los bits restantes . Para las palabras propuestas : palabra compl . a 1 compl . a 2 1010101 0101010 0101011 0111000 1000111 1001000 0000001 1111110 1111111 10000 01111 10000 00000 11111 00000Problema 13 .- Obtenga el complemento a 9 y a 10 de los siguientes números decimales : 13579, 09900, 90090, 10000, 00000.Solución P13.- Se define Ca9(N) = ( on - 1) - N . De esta definición podemos inferir que si N= Nn_1Nn_2 . . .N1N0, entonces Ca9(N) = (9 - N n_ 1 )(9 - N n_2 ) . . .(9 - N 1 )(9 - N 0) . Por otra parte CalO(N) = 10 n - 1 = Ca9(N) + 1 Para las cantidades propuestas en el enunciado : número compl . a 9 compl . a 10 13579 86420 86421 09900 90099 90100 90090 09909 09910 10000 89999 90000 00000 99999 00000Problema 14.- Represente con el mínimo número de bits posibles los siguientes números de-cimales en notación binaria, signo-magnitud, complemento a 1 y complemento a 2 :a) ± 122, b) ± 64 ; c) ± 15; d) ± 37Solución P14 .- La representación binaria con n bits permite representar los números compren-didos entre 0 y 2 n-1 , siendo una representación sin signo . Esto es, no podemos representar +Nni -N sino sólo N . En particular, operando como en el problema 2 : a) 122 = 1111010 (2 b) 64 = 1000000(2 c) 15 = 1111(2 d) 37 = 100101(2
  20. 20. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 13 La representación signo-magnitud añade un bit de signo (0 para + y 1 para -) a la repre-sentación binaria de la magnitud, situando ese bit de signo en la posición más significativa.Entonces, con n bits pueden representarse todos los números enteros comprendidos entre- (2 n-1 - 1) y + (2n-1 -1) . En particular, a)+122=01111010 -122=11111010 b) + 64 = 01000000 - 64 = 11000000 c)+15=01111 -15=11111 d)+37=0100101 -37=1100101 La representación complemento a 1 sigue el siguiente convenio : - Un número positivo se representa igual que en signo-magnitud . - Un número negativo se representa complementando a 1 el correspondiente númeropositivo . Con n bits pueden representarse todos los números enteros comprendidos entre- (2 n-1 - 1) y + (2 n-1 - 1) . En particular, a) + 122 = 01111010 - 122 = 10000101 b) + 64 = 01000000 - 64 = 10111111 c)+15=01111 -15=10000 d)+37=0100101 -37=1011010 La representación en complemento a 2 sigue el siguiente convenio : - Un número positivo se representa como en los casos anteriores . - Un número negativo se representa mediante el complemento a 2 del correspondiente n-1número positivo . Con n bits pueden representarse los 2 n números comprendidos entre - 2y + (2 n- -1) . En nuestro caso, a) + 122 = 01111010 - 122 = 10000110 b) + 64 = 01000000 - 64 = 1000000 c)+15=01111 -15=10001 d)+37=0100101 -37=1011011Problema 15 .- Se dispone de palabras de 10 bits . Sobre ellas se escriben números fraccio-narios en punto fijo dedicando 3 bits a la parte fraccionaria . Represente los siguientes núme-ros en las notaciones signo-magnitud, complemento a 1 y complemento a 2, en los dos casossiguientes : a) Redondeando el valor; b) Truncando el valor .Nota: Para los números negativos, obtenga primero el valor de la magnitud y, después, apli-que la notación .1)+27.625 3)+33.3 5)+45.67 7)+45 .72)-27.625 4)-33.3 6)-45.67 8)-45 .7Solución P15 . 1) + 27 .625 = 0011011 . 101(2, en este primer caso, no es necesario redondear ni truncarla parte fraccionaria pues sólo hay tres dígitos en la parte fraccionaria del número exacto . Portanto, la representación con 10 bits (7 para la parte entera y 3 para la fraccionaria) sería : 010111110 1
  21. 21. 14 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES 2) - 27 .625 = 1011011 .101 S-m = .010c 1 = 1100100 - 011 , ., 2- ., 1100100 3) + 33 .3 = 0100001 .0100 . . . truncando en 3 bits para la parte fraccionaria : 0100001 .010,redondeando se obtiene el mismo valor ya que el valor exacto en el bit b-4 es 0 . 4) - 33 .3 = 1100001 .01 Os-n] = 1011110 .101 101, a 1 = 1011110: 110, . a 2- . 5) + 45 .67 = 0101101 .10101 . . . truncando en 3 bits para la parte fraccionaria :0101101 .101, redondeando : 0101101 .110 . 6) - 45 .67 = 1101101 .101 S _ m = 1010010 .010c . a 1 = 1010010.011 c . a 2 (truncando) . -45 .67 = 1101101 .110 s _ m = 1010010 .001, . a 1 = 1010010-010, .a2 (redondeando) . 7) + 45 .7 = 0101101 .1011 truncando en 3 bits para la parte fraccionaria : 0101101 .101y redondeando : 0101101 .110 . 8) - 45 .7 = 1101101 .1 l OS-n1 = 1010010 .001, . a 1 = 1010010 .010, . a 2 (truncando) . - 45 .7 = 1101101 .1 l OS-n1 = 1010010 .001c . a 1 = 1010010 .01 Oc . a 2 (redondeando) .Problema 16.- Se dispone de 30 bits para escribir números en notación exponencial . De ellosse destinan 21 a la mantisa y 9 al exponente . Mantisa y exponente se escriben en notaciónsigno-magnitud. a) Determine los rangos de valores decimales que se pueden escribir . b) Represente en BCD los siguientes números : 1 . Velocidad de la luz en mis (3x10 8). 2. Carga del electrón en culombios (- 1,602x10 -19) . -31) . 3. Masa del electrón en kilogramos (9,109x10 4 . Aceleración de la gravedad en mis 2 (9,807) . 5. Cero. 6. nfinito .Solución P16 .- En notación exponencial los números se expresan en la forma : M = m x be (mmantisa, b base, e exponente) . En nuestro caso, hay que representar las cantidades pedidas enBCD . Por tanto la base es decimal . Cada dígito BCD es codificado por 4 bits . Disponemos de21 bits para la mantisa de los cuales uno es para el signo, los otros 20 bits nos permiten alma-cenar 5 dígitos BCD . En cuanto a la parte fraccionaria, tenemos 9 bits, uno para el signo y 8para dos dígitos BCD . Por tanto, el espacio disponible se distribuye de la siguiente forma : mantisa exponente Sm Se Utilizaremos normalización fraccionaria, es decir, el punto decimal se encuentra a la iz-quierda del primer dígito representado y ese primer dígito ha de ser no nulo . a) El rango de valores positivos que se puede representar viene dado por el menor nú-mero representable : mantisa + 10000 y exponente - 99 que corresponde al 0 .1 x 10 -99 , y el 99mayor representable : mantisa + 99999 y exponente + 99 que corresponde al 0 .99999 x 10Por tanto el rango cubierto es [0 .1 x 10-99 , 0 .99999 x 1099 ] . -99 ] En cuanto al rango de valores negativos, será [- 0 .99999 x 1099 , - 0 .1 X 10
  22. 22. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 15 b) Las cantidades propuestas quedan : 1) 3 x 10 8 , normalizado -* 0 .3 x 109 , los 30 bits serán : 0011100001000010000 0000 010000 1001 mantisa exponente 2) - 1 .602 x 10-19 , normalizado - - 0 .1602 x 10 -18 , los 30 bits serán : 1 0001101101000010010_ 0000 1 1100011 1000 3) 9 .109 x 10-31 , normalizado -4 0 .9109 x 10-30, los 30 bits serán : 01100110001100001100110000 0011 0000 4) 9 .807, normalizado -* 0 .9807 x 10 1 , los 30 bits serán : 0 1001 1000 000110111 0000 000010001 5) Por convenio, cero, es el único número con el primer dígito de la mantisa a 0 . (Nor-malmente se ponen todos los dígitos de la mantisa y el exponente a 0, pero bastaría sólo confijar a cero el primer dígito de la mantisa) . xl00001xxxxlxxxxlxxxxlxxxx xlxxxx xxxx1 6) nfinito . Con signo positivo, por convenio viene dado por el mayor número represen-table . Con signo negativo, será el menor representable : + infinito 10011100111001 1001 10011 011001 1001 - infinito 1 100111001110011100111001 101100111001 mantisa exponenteProblema 17.- Represente el número (+ 31 .5) 10 con un coeficiente entero normalizado de 13bits y un exponente de 7 bits como : a) Un número binario (asuma base 2) . b) Un número octal binario codificado (asuma base 8) . c) Un número hexadecimal binario codificado (asuma base 16) .Solución P17 . a) 31 .5 ( 10 = 11111 .1(2 pero hemos de escribirlo en forma exponencial de manera que lamantisa tenga 13 bits (incluido el bit de signo) y el exponente 7 bits (incluido bit de signo) : _7 (2 31 .5 (10 = 0111111000000 x 2 Entonces la mantisa, de 13 bits, es : 0 1111110000000 y el exponente, de 7 bits, es :1000111 .
  23. 23. 16 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES b) 31 .5 (10 = 37 .4 (8 , también hemos de escribirlo en forma exponencial de manera que lamantisa tenga 13 bits (incluido el bit de signo) y el exponente 7 bits (incluido bit de signo) . Sinembargo, en este caso se trata de dígitos octales, y cada dígito octal se codifica mediante tresbits . Por tanto, hemos de escribirlo en forma exponencial de modo que la mantisa tenga 4 dígi-tos octales (+ el bit de signo son un total de 13 bits) y el exponente 2 dígitos octales (+ el bitde signo hacen un total de 7 bits) . Entonces : 8-2(8, 31 .5 (10 = 3740 x con lo que la mantisa quedaría : 0 011 111 100 000 y el exponen-te, de 7 bits, es 1 000 010 . c) 31 .5 (10 = 1F .8 (16 , en este caso la normalización ha de realizarse teniendo en cuentaque un dígito hexadecimal se codifica con 4 bits . La mantisa, por tanto, ha de tener 4 dígitoshexadecimales (12 bits) . 31 .5 (1 0 = 1F8 x 16 -1 , por tanto, la mantisa será : 0 0001 1111 1000, y el exponentequedará : 1 00 0001 .PROBLEMAS CON SOLUC ÓN RESUM DAProblema 18.- Represente los siguientes números decimales en base 2 y compruebe el re-sultado : a) 17,, b) 94 .Solución P18 . a) 17(10 = 10001(2 - b) 94 (10 = 1011110(2 .Problema 19.- Pase los siguientes códigos hexadecimales a código binario, octal y BCD : a)$F2.85; b) $B02.A ; c) $25.FA ; d) $71 .02.Solución P19 .- El código BCD corresponde a la representación binaria de un número decimal .Esta se obtiene asociando a cada dígito decimal su representación binaria de 4 bits . Para pasarun número desde una determinada base a BCD, deberá obtenerse en primer lugar el número enbase 10, y después hacer la conversión antes indicada . a) $F2 .B5 = 1111 0010 .1011 0101(2 = 011 110 010 .101 101 010( 2 = 362.552( 8 . Pararepresentarlo en BCD pasamos a base 10 :$F2 .B5 = F x 16 + 2 x 160 + 11 x 16 -1 + 5 x 16 -2 = 242 .70(10 _3 0010 0100 0010 .0111 (BCD) • Procedemos de igual forma con el resto de los casos : b) $B02 .A = 1011 0000 0010 .1010 (2 = 5402 .5 ( 8 = 2818 .625 ( 10 = 0010 1000 0001 1000 .0110 0010 0101 (BCD) . c) $25 .FA = 0010 0101 .1111 1010 (2 = 45 .764 ( 8 = 37 .977(10 = 0011 0111 .1001 0111 0111 (BCD) • d) $71 .02 = 0111000 1 .0000 0010 (2 = 161 .004(8 = 113 .007(10 = = 000 1000 100 11 .0000 0000 0111 (BCD) •
  24. 24. REPRESENTAC ÓN Y COD F CAC ÓN B NAR A 17Problema 20.- Represente el número decimal 8620 (a) en BCD, (b) en código exceso 3,(c) en código 2, 4, 2, 1 y (d) como número binario .Solución P20 . a) 8620(10 3 1000 0110 0010 0000 (BC p) . b) 8620 (10 -3 1011 1001 0101 001 1 (exceso-3) • c) El código 2,4,2,1 es un código pesado de 4 bits cuyos pesos son precisamente 2,4,2,1 . dígito Pesos : decimal 2421 0 0000 1 0001 2 0010 3 0011 4 0100 5 1011 6 1100 7 1101 8 1110 9 1111 Entonces, 8620 (10 -3 1110 1100 0010 0000 d) Lo más fácil es pasar primero a base 16 por el método de las divisiones sucesivas ydespués pasar a base 2, desde base 16 . 8620 (10 -3 21AC(16 -* 0010 0001 1010 1100 ( 2 -* 10000 110 10 1100(2 .Problema 21 .- Un código binario usa 10 bits para representar cada uno de los diez dígitosdecimales . A cada dígito le asigna un código de nueve ceros y un uno . El código binario parael número 6, por ejemplo, es 0001000000. Determine el código binario para los números de-cimales restantes .Solución P21 .- Se trata del código "1-hot", también llamado "1-out-of-n" . En este caso n = 10 . dígito bg b 8 b 7 b6 b 5 b 4b3 b2b l bo 0 0000000001 1 0000000010 2 0000000100 3 0000001000 4 0000010000 5 0000100000 6 0001000000 7 0010000000 8 0100000000 9 1000000000
  25. 25. 18 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALESProblema 22.- Obtenga un código binario pesado para los dígitos de la base 12 usando lospesos 5421 .Solución P22. dígito 5421 dígito 5421 0 0000 6 1001 1 0001 7 1010 2 0010 8 1011 3 0011 9 1100 4 0100 A 1101 5 1000 B 1110Problema 23.- Determine el rango de valores numéricos que pueden escribirse en palabrasde 8, 16 y 32 bits, en las diferentes notaciones de números enteros con signo .Solución P23 .- Con n bits se representan los siguientes rangos : n-1 - 1)] - Signo-magnitud : [- (2n-1 - 1), + (2 - Complemento a 1 : [- (2n-1 - 1), + (2 n-1 - 1)] - Complemento a 2 : [- 2 n-1 , + (2n-1 - 1)] Entonces para los valores de n propuestos : n 2 de bits signo-magnitud y complemento a 2 complemento a 1 8 [- 127,+ 127] [- 128,+ 127] 16 [- 32767, + 32767] [- 32768, + 32767] 32 [- (231- 1) + (2 231,+ 31- 1 )] 1- (2 31- 1)]Problema 24.- Un registro de 30 bits almacena un número decimal en punto flotante repre-sentado en BCD. Los coeficientes ocupan 21 bits del registro y se asume como un entero nor-malizado . Los números en el coeficiente y el exponente se asumen representados en formade signo-magnitud. ¿ Cuáles son las cantidades mayores y menores que pueden ser acomo-dadas excluyendo el cero? . Repita para representación binaria, con base 2, si se representacon fracción normalizada .Solución P24 . BCD normalizado entero, 99 - Cantidad mayor positiva : 99999 x 10 10 -95 -Cantidad menor positiva : 10000 x 10-99 = Base 2 fracción normalizada, 11111111 = (1 -2 -21) x 2 255 . - Cantidad mayor positiva : 0 .111 . . .111 x 2 2-1 -255 =2 -256 - Cantidad menor positiva : 0 .100 . . .000x2-11111111 = x2
  26. 26. Capítulo 2 ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓNEl modo más riguroso e inequívoco de describir la funcionalidad de los circuitos digitales esde forma matemática, mediante expresiones y funciones de conmutación . Con ello, además, sefacilita el desarrollo de métodos más o menos sistemáticos a la hora de abordar las tareas deanálisis o diseño de circuitos . Es objetivo de este Capítulo familiarizar al lector con los con-ceptos relacionados con el álgebra de conmutación, el manejo de expresiones lógicas y las for-mas de representación de funciones que se utilizarán en este y otros Capítulos .ÁLGEBRA DE CONMUTAC ÓNEl álgebra de conmutación es un sistema matemático compuesto por un conjunto de dos ele-mentos : B = {0, 11, y dos operaciones OR (+) y AND ( •) definidas en B de la siguiente forma : 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 OR AND El álgebra de conmutación cumple los postulados del álgebra de Boole . De ahí que po-damos decir que la primera es un caso particular de la segunda . Los postulados del álgebra deBoole son los siguientes : P1 . Ley de identidad : Existen elementos identidad (0 para la operación "+" y 1 para laoperación " ") de forma que para cualquier elemento x, se cumple : x+0=x x • 1=* P2. Ley conmutativa : Para cualesquiera dos elementos x e y, se cumple : x+y=y+x x .y=y .x P3 . Ley distributiva : Dados tres elementos x, y, z se cumple : x+(y .z)=(x+y) .(x+z) x . (y+z)=x .y+x .z 19
  27. 27. 20 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES P4 . Ley del complemento : Para todo elemento x existe un elemento x tal que: x+x= 1 x • x=0 A partir de estos postulados es posible probar una serie de propiedades de interés . Estaspropiedades, que aquí simplemente se enumeran, son demostradas en el problema 1 para elcaso general del álgebra de Boole y probadas en el problema 2 para el álgebra de conmutación . T . Ley de idempotencia : x + x = x x • x = x T2 . Ley de unicidad del complemento : el elemento x del postulado cuarto es único . T3 . Ley de los elementos dominantes : x + 1 = 1 x •0 = 0 T4 . Ley involutiva : (x) = x T5 . Ley de absorción : x + x • y = x x • (x + y) = x T6 . Ley del consenso : x + x • y = x + y x • (x + y) = x • y T7 . Ley asociativa : x • (y • z) _ (x • y) •z x + (y + z) = (x + y) + z T8 . Ley de DeMorgan : xy=x+y x +y=x •y T9 . Ley de De Morgan generalizada : x y z ... = x + y + z + .. . x + y + z . . .= x •y •z • . . . T10. Ley del consenso generalizado : x •y + x • z + y z = x y +x• z (x+y) •( x+z) •( y+z)=(x+ y) •(x+z)FUNC ONES DE CONMUTAC ÓNSon funciones que se definen sobre el conjunto B = (0, 1 } del álgebra de conmutación . Estric-tamente se definen como : f: Bx . . . xBxB = Bn -4 B . Así una función de n variables asigna un valor o imagen de B (0 ó 1) a cada punto delespacio B : (x 1 ,x 2 , . . .,x,) . Por ejemplo, una función de tres variables : f(x, y, z) se puede definirde la siguiente forma: f(0,0,0) = 0, f(0,0,1) = 1, f(0,1,0) = 0, f(0,1,1) = 1, f(1,0,0) = 0,f(1,0,1) = 0, f(1,1,0) = 1, f (1,1,1) = 1 . A veces no todas las combinaciones de las variables tie-nen imagen, decimos entonces que la función es incompleta o que está incompletamente espe-cificada. Cuando esto sucede, por ejemplo, en la combinación (x 0 ,Y 0 ,z0) lo simbolizamos dela siguiente forma : f(x0,y o,z 0 ) = d ó f(x 0 ,Y 0,z 0) = -, donde los símbolos "-" y "d" (dont care)son llamadas inespecificaciones o indeterminaciones .REPRESENTAC ÓN DE FUNC ONESExisten diversos modos de representar las funciones de conmutación . Algunas formas utilizantablas o mapas (modos gráficos) . Otras, consisten en expresiones algebraicas . A continuacióndaremos algunos detalles sobre las formas de representación utilizadas en este texto . - Tablas de verdad. En una tabla se representan dos columnas . En la primera de ellas se escriben todas lascombinaciones de las variables de entrada en orden binario . En la otra columna se anota el va-lor que toma la función para cada combinación de las variables de entrada . A continuación semuestra un ejemplo para una función de tres variables . Nótese que para n variables se necesi-taría una tabla de 2n filas . Así, este tipo de representación es más interesante para funciones deun número reducido de variables .
  28. 28. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 21 xyz f 000 001 010 011 100 101 110 111 -Mapa de Karnaugh . Es también una forma gráfica . Las variables de la función se dividen en dos grupos . Unode ellos se sitúa en el eje horizontal de una tabla y el otro en el eje vertical . Las combinacionesde cada grupo de variables se escriben en el orden del código Gray . Así, disponemos de unacuadrícula en cuyas celdas se anota el valor de la función para la combinación de las variablesasignada . La propiedad principal es que dos celdas geométricamente adyacentes también co-rresponden a códigos lógicos adyacentes . En el ejemplo se muestra un mapa para una funciónde 4 variables . En los problemas aparecen ejemplos para 5 variables . Al igual que en el casode las tablas de verdad, este tipo de representación aumenta su tamaño de forma potencial conel número de variables . Si el orden en que se escriben los valores de las variables es el binarionatural, el mapa es denominado binario . ab c 11 10 00 0 0 0 0 01 1 1 0 0 11 0 0 1 1 10 0 1 1 1 f - Expresiones o fórmulas . En este caso se utiliza una expresión algebraica para representar las funciones . Secombinan las variables con los operadores NOT , AND 2 y OR . Aquellas combinaciones de lasvariables que hagan 1 (ó 0) la expresión serán las combinaciones en que la función es 1 (ó 0) . Algunos tipos de fórmulas son de un interés particular . Entre las más destacables estánlas formas canónicas y estándares . Tanto unas como otras tienen en común que son fórmulascompuestas únicamente por suma de productos, o bien, únicamente por producto de sumas . Enlas formas canónicas, además, se cumple que los productos son siempre mintérminos y las su-1 NOT(x) = x.2 El símbolo del operador AND ( •) puede omitirse: a • b = a b .
  29. 29. 22 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALESmas son maxtérminos . Tenemos así que las formas canónicas son sumas de mintérminos o pro-ducto de maxtérminos . A continuación se muestra para la función de cuatro variables del ejem-plo anterior expresiones en forma canónica y estándar tanto de sumas como de productos . - Suma de mintérminos : f(a,b,c,d)=abcd+abcd+abcd+abcd+abcd+abcd+abcd= =m1+m5+m6+m10+m11+m14+m15=E(1,5,6, 10, 11, 14, 15) . - Producto de maxtérminos : f(a,b,c,d)=(a+b+c+d)(a+b+c+d)(a+b+c+d)(a+b+c+d) (a+b+c+d)(a+b+c+d)(a+b+c+d)(a+b+c+d)(a+b+c+d)= = M0 M2 M3 M4 M7 M8 M9 M12 M13 = T (0, 2, 3, 4, 7, 8, 9, 12, 13) . - Suma de productos : f(a,b,c,d)=acd+ac+bcd . - Producto de sumas : f(a, b, c, d) = (c + d) (á + c) (a + c + d) (a + b + c). Mientras que las dos primeras formas son únicas para cada función (canónicas), las dossiguientes (es- tándares) no lo son, pero presentan una mayor simplicidad .Índice del CapítuloEste Capítulo desarrolla problemas de las siguientes materias : - Demostración de teoremas e identidades . - Manejo de expresiones lógicas . - Representación mediante tablas, mapas y formas canónicas y estándares .PROBLEMAS RESUELTOSProblema 1 .- Demuestre los teoremas booleanos en base a la definición del álgebra .Solución P1 .-Nos basaremos en los postulados del álgebra de Boole : P1 . dentidad : x+ 0= x x- 1= 1 P2 . Conmutativa : x+ y= y+ x x • y= y . X P3 . Distributiva : x + (y - z) = (x + y) - (x + z) x • (y + z) = x • y + x • z P4 . Complemento : x+ x= 1 x•x= 0 Los teoremas y sus demostraciones se relacionan a continuación . T1 . dempotencia : x+ x= x x • x= x x+x=(x+x) • 1 =(x+x)(x+x)=x+xx=x+0=x x-x=x-x+0=x-x+x-x=x-(x+x)=x- 1 =x Hemos aplicado los postulados P , P4, P3, P4 y P1, en ese orden . T2 . Unicidad del complemento : da e B, 3 a E B 1 a= á Si existieran dos complementos, al y a2 se cumplirían las siguientes igualdades (por P4) : a+a 1 =1 a+a 2 =1 a .a1=0 a .a2 =0 Entonces : al =al • 1=a1 •( a+a2),=a1 -a+ al •a2=0+a1 •a 2=a •a 2+a1 •a2= =(a+al)-a2=1 •a 2=a2
  30. 30. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 23Se han aplicado los postulados P1, P4, P3, P2, P4, P3 y P1, en ese orden .T3 . Elementos dominantes : x + 1= 1 x • 0= 0 x+1=(x+1) •1 =(x +1) •( x+x)= x +1 • x_ x+x=1 = x •0 =x •0 +0=x •0 +x •x =x(O+x)=x •x =0Los postulados utilizados son P1, P4, P3, P2, Pl y P4 .T4 . Lev involutiva: (x) = x (x)=(x)+0=(x)+x • x=[(X)+x] • [(X)+x]=[(X)+x] • 1 = =[(x)+x](x+x)=x+ [x •( x)]=x+0=xdonde se han aplicado P , P4, P3, P4, P2, P4, P2, P3, P4 y P1 .T5 . Ley de absorción : x + x • y = x x • (x + y) = x x+x •y =x •1 +x •y =x •( 1+y)=x •1 =x x •( x+y)=(x +0) •( x+y)=x +0 •y =x+0=xEn esta demostración hemos usado P , P3, T3 y Pl en ese orden .T6. Ley del consenso: x + x • y = x + y x • (x + y) = x • y x+ x •y =(x+x) •( x+y)=1 •( x+y)=x+y x •( x+y)=x •x +x •y =0+x •y =x •yLos postulados en que nos hemos apoyado son P3, P4, P2 y P1 .T7. Lev asociativa : x • (y • z) = (x • y) • z x + (y + z) = (x + y) + zPara demostrarla es necesario demostrar previamente tres lemas : L1 . a = a + a • (b • c) a = a • [a + (b + c)] (ambos por T5) L2 . a = a + b • (a • c) a = a • [b + (a + c)] cuya demostración es : a+b •( a •c )=(a+b) •( a+ a •c )=(a+b) • a = a a •[ b+(a+c)]=a •b +a •( a+c)=a .b+a=a donde hemos utilizado P3 y T5 . L3 . a=a+b •(c •a ) a=a •[ b+(c+a)] por P2 y L2.Ahora demostremos la ley asociativa :x • (y • z) = [x + z • (x • y)] • ([y + z • (x • y)] • [z + z • (x • y)]) _ (por L2, L3 y L1) =[x+z .(x .y)] .(y •z +z .(x •y ))= (porP3) = x (y • z) + z (x • y) = (aquí también hemos aplicado P3) = z (x y) + x (y z) = (esto, por P2) = [z + x • (y • z)] • [x • y + x (y • z)] = (donde hemos aplicado P3) = z . [x • y + x • (y • z)] = (por L3) = z • [x + x • (y • z)] [y + x • (y • z)] = (porP3) = z • (x • y) = (x • y) • z (por L , L2 y finalmente P2) .Luego, hemos probado x • (y • z) = (x • y) • zPor otra parte,x+(y+z)=x [z+(x+y)]+(y •[ z+(x+y)]+z • [z + (x + y)]) = (porL2, L3 y L ) = x • [z + (x + y)] + (y + z) • [z + (x + y)] = (por P3) _ [x + (y + z)] • [z + (x + y)] = (aquí también hemos aplicado P3) = [z + (x + y)] • [x + (y + z)] = (esto, por P2)
  31. 31. y OR (+) en el álgebra de24 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES = z • [x + (y + z)] + (x + y) • [x + (y + z)] = (donde hemos aplicado P3) =z+(x+y) •[ x+(y+z)]= (porL3) = z + x • [x + (y + z)] + y • [x + (y + z)] = (por P3) = z + (x + y) = (x + y) + z (por L , L2 y finalmente P2) . Con lo que queda probado que x + (y + z) _ (x + y) + z . T8 . Ley de DeMorgan : x y = x + y x+y=x .y La base de la demostración es que como el complemento es único y cumple el postuladoP4, entonces, si A + B = 1 y A • B = 0 es porque A = B, esto es : A=BOA+B=1 y A B=0 . Sean A = x + y, B = x • y ; demostremos que A = B . A +B=x+y+x •y =x+y+x=x+x+y=1+y=1 (T6, P2, P4 y T ) . A•B =(x+y) •x•y =x •x•y +y •x•y =0 •y +0 •x =0+0=0(P3,P2,P4,T3,T1) . • Sean A = x y, B = x + y ; demostremos que A = B . A +B= x •y +x+y=y+x+y=x+y+y=x+1=1 (T5, P2, P4 y T3) . A•B =x •y•( x+y)=x •y•x +x •y•y =0 •y +x •0 =0+0=0(P3, P2, P4, T3, T ) . T9 . Ley de De Morgan generalizada : xyz . . .=x+y+z+ . .x •y•z x + y + z . . .=x ... xyz . . . =x(yz . . .)=x+yz . . .=x+y(z . . .)=x+y+z . . .= =x+y+z( . . .)= . . .=x+y+z+ . . . • x+y+z . . .=x+(y+z+ . . .)=x • y + z . . .=x y+(z . . .)=x y z+ . . .= • • =x •y•z •y•z• . +( . . .)= . . .=x .. En las dos demostraciones se utilizan los teoremas T7 y T8 alternativamente . T10. Lev del consenso generalizado : x •y +x •z +y •z =x .y+x •z •( •( (x+y) x+z) y+z)=(x+y) x+z) •( x •y +x +y•z •z •y •z •z•1 =x +x +y = (P1) =x •y •z •z•( +x +y x+x)= (P4) =x .y+x •z •z•x •z•x +y +y = (P3) =x .y+x •y•z +x •z +x .z •y = (P2) =x .y+x •z (T5) (x+y) •(x+z) • (y+z)=(x+y) •(x+z) •( y+z+0)= (P1) =(x+y) •( x+z) •( y+z+x • x) = (P4) =(x+y) •( x+z) •( y+z+x) •( y+z+ x)= (P3) •( •( =(x+y) x+y+z) x+z) x+z+y)= •( (P2) = (x + y) • (x + z) (T5)Problema 2.- Demuestre los teoremas booleanos en el álgebra de conmutación comproban-do su validez mediante tablas de verdad .Solución P2 .- A partir de la definición de las operaciones AND ( •)conmutación, comprobaremos : - dempotencia : x = x + x, x = x • x; - Elementos dominantes : x + 1 = 1, x • 0 = 0 ;
  32. 32. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 25 - nvolutiva : x = x; - Absorción : x + x y = x, x (x + y) = x ; - Consenso : x + x y = x + y, x (x + y) = x y ; - Asociativa: (x + y) + z = x + (y + z), (x y) z = x (y z) ; -LeyDeDeMorgan : xy=x+y, x+y=xy . En las dos tablas siguientes podemos ver la comprobación de todos los teoremas exceptoel de la ley asociativa que se prueba a continuación . x y x x+x xx x+1 x0 x p(donde p=x) x+xy x(x+y) 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 x y x+xy x+y x(x+y) xy xy x+y x+y xy 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 La comprobación de la ley asociativa : xyz x+y (x+y)+z y+z x+(y+z) xy (xy)z yz x(yz) 000 0 0 0 0 0 0 0 0 001 0 1 1 1 0 0 0 0 010 1 1 1 1 0 0 0 0 011 1 1 1 1 0 0 1 0 100 1 1 0 1 0 0 0 0 101 1 1 1 1 0 0 0 0 110 1 1 1 1 1 0 0 0 111 1 1 1 1 1 1 1 1Problema 3.-Para elementos del álgebra de conmutación, pruebe la validez de : a) a b=a c- b=c ; b)a+b=a+c-+b=c ; c) a •b =a cya+b=a+c->b=c .Solución P3 . a) No se cumple, por ejemplo, para a = 0, b = 1, c = 0 . b) No se cumple, por ejemplo, para a = 1, b = 1, c = 0 . c) Sí se cumple . Se puede comprobar que para cualquier combinación de valores secumple . También se puede demostrar algebraicamente :
  33. 33. 26 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALES b=b+a •b =b+a •c =(b+a) •( b+c)=(a+b) •( b+c)=(a+c) •( b+c)= =a •b +c=a •c +c=c . Se han aplicado la ley del consenso, las propiedades distributiva y conmutativa, y lasigualdades a • b= a • c y a+ b= a+ c .Problema 4 .- Compruebe las siguientes igualdades: a) x y+ xz + y z = x y+ x z (ley del consenso generalizado) b)x(x+y)+z+zy=y+z c)xy+xyz=xy+z d)w+wx+yz=w(y+z) e)w[x+y(z+w)]=w+xy+xz f) (w+x+ y) (w+x+y) (y+z) (w+z)= (w+ y) (y+z)Solución P4 . a)xy+xz+yz=xy+xz+(x+x)yz=xy+xz+xyz+xyz= =xy+xyz+xz+xzy=xy(1+z)+xz(1+y)=xy+xz donde hemos aplicado P4, P3, P2, P3, T3 y P1 b)x(x+y)+z+zy=xy+z+y=y+yx+z=y+zporT6,P2yT5 c) x y + xyz = x y + z (por la ley del consenso : u + u z = u + z donde u = x y) d)w+wx+yz=w+yz=wyz=w(y+z) porT5yT8 e)w[x+y(z+w)]=w+x+y(z+w)=w+xy(z+w)=w+x(y+z+w)= =w+xy+xzw=w+xy+xz por T8yT6 fl(w+x+y)(w+x+y)(y+ z) (w+z)= [(w+y)+xx](y+z)(w+z)= =(w+y)(y+z)(w+z)=(w+y) (y+z) por P2,P3,P4,PlyT10 .Problema 5.- Reduzca las siguientes expresiones del álgebra de Boole al número de literalessolicitado al lado de cada una de ellas . a)abc+abc+abc+abc+abc (a cinco literales) b) b c + a c + a b+ b c d (a cuatro literales) c)[cd+a]+a+cd+ab (a tres literales) d) [(a + c + d) (a + c + d) (a + c+ d) (a + b)] (a cuatro literales)Solución P5. a) abc+abc+abc+abc+abc= =abc+abc+abc+abc+abc+ábc= (ya que x + x = x) =abc+abc+abc+abc+abc+ábc= (por la propiedad conmutativa) =ab(c+c)+ab(c+c)+(a+a)b c=
  34. 34. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 27 =ab 1 +áb 1+ 1 bc= (ya que x+x= 1) = a b + a b + b c = b (a + c) + a b (ya quex • 1=1 •x =x) . b) b c + a c + a b + b c d = b c + b c d + a c + a b =(por la propiedad conmutativa) =bc+ac+ab=bc+ac+ab(c+c)= (ya que x + x y = x) = b c+ a c+ a b c+ a b c= (por la propiedad distributiva) =bc(1+a)+ac(l+b)= =bc+ac (ya que 1 +x= 1) . c) aplicando la ley de De Morgan a la expresión, obtenemos : cdá + a + c d + a b =cdá + a + a b + c d = (por la propiedad conmutativa) = c d + a + c d = (ya que x + x y = x) . =a+cd (yaquex+x=x) d)(a+c+d)(a+c+d)(a+c+d)(a+b)= =(a+c+d)(a+c+d)(a+c+d)(a+c+d)(a+b)= (yaquex=xx) = (a + c) (a + d) (a + b) = a + b c d (por la propiedad distributiva) .Problema 6.- Verifique si se cumplen o no las siguientes igualdades : a)M(a,b,c)+M(d,e,f)=M(a+d,b+e,c+f) . b) M (a, b, c) • M (d, e, f) = M (a • d, b • e, c • f) . c) M (a, b, M (c, d, e)) = M (M(a, b, c), d, M(a, b, e)]. donde M (x y, z) es la función mayoría de x y, z: M (x, y, z) = x y + x z + y z.Solución P6 . a) No se cumple pues para a = 0, b = 0, c = 1, d = 0, e = 1 y f = 0 se tiene queM(a, b, c) + M(d, e, f) = M(0, 0, 1) + M (0, 1, 0) = 0 + 0 = 0 y, sin embargo :M(a+d,b+e,c+f)=M(0, 1, 1)=1 . b) No se cumple, pues para a = 0, b = 1,c = 1, d = 1, e = 0 y f = 1 se tiene queM(a, b, c) M (d, e, f) = M(0, 1, 1) • M(1, 0, 1) = 1 • 1 = 1 mientras queM(a •d ,b e,c •f)=M(0,0,1)=0 c) Sí se cumple pues M[a, b, M(c, d, e)] = M[a, b, c d + c e + d e] _=ab+a(cd+ce+de)+b(cd+ce+de)=ab+acd+ace+ade+bcd+bce+bdey, por la otra parte : M[M(a, b, c), d, M(a, b, e)] = M[a b + a c + b c, d, a b + a e + b e]==(ab+ac+bc)d+(ab+ac+bc)(ab+ae+b e)+d (ab+ae+b e)==abd+acd+bcd+ab+abe+abc+ace+ a b c e+ abce+bce+abd+ade+bde== a b+ a c d+ b c d+ a c e+ b c e + a d e+ b d e, luego ambas expresiones son iguales .Problema 7.- Obtenga la tabla de verdad de las siguientes expresiones : a)f=wyz+xy+wy) b) f= (w+x+y) (x+z) (w+x) .
  35. 35. 28 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALESSolución P7 . a) Si f = w y z + x y + w y, entonces es fácil deducir cuándo f = 1 : /wyz=1 ==> w=1,y=1,z=1 f=1 f=> xy=1 ~x=1,y=1 wy=1~w=1,y=1 con ello, la tabla de verdad es : wxyz f wxyz f 0000 0 1000 0001 • 1001 0010 • 1010 0011 • 1011 0100 • 1100 0101 • 1101 • 110 1 1110 • 111 1 1111 b) Si f = (w + x + y) (x + z) (w + x), es fácil encontrar los ceros de f: /w+x+y=O==> w=0,x=0,y=0 f=0e-> x+z=0~ x=0,z=0 w+x=0~ w=0,x=0 con ello, la tabla de verdad es : wxyz f wxyz f 0000 • 1000 0001 0 1001 0010 0 1010 001 1 • 1011 0100 1 1100 0101 1 1101 • 110 1 1110 0111 1 1111Problema 8.- Obtenga los mapas de las siguientes funciones : a) f = E (5, 6, 7, 12) + d(1, 3, 8, 10) . b) f =11 (10, 13, 14, 15) • d(0, 1, 2, 8, 9) . c) f = E (1, 2, 3, 8, 12, 23) + d(17) .
  36. 36. ÁLGEBRA Y FUNC ONES DE CONMUTAC ÓN 29Solución P8. a) f (a, b, c, d) = E (5, 6, 7, 12) + d(1, 3, 8, 10) c 11 10 00 0 0 1 d 01 4 d 0 o 11 d 1 0 0 10 0 1 0 4 f b) f (a, b, c, d) = f (10, 13, 14, 15) + d(0, 1, 2, 8, 9) ab c 01 11 10 00 d 1 1 d 01 d 1 0 d 11 1 1 0 1 10 d 1 0 0 f c) f (a, b, c, d, e) = E (1, 2, 3, 8, 12, 23) + d(17) cd 00 0 0 1 1 0 0 0 0 01 1 0 0 0 0 0 0 d 11 1 0 0 0 0 0 1 0 10 1 0 0 0 0 0 0 0 fProblema 9 .- Obtenga las formas normales en suma de productos y producto de sumas delas siguientes expresiones : a)f=(ab+ac)(ab)) b)f=xy(v+w)[(x+y) vi . c)f=x+yz) d)f=(a+b+c)(d+a)+bc+ a c .
  37. 37. 30 PROBLEMAS DE C RCU TOS Y S STEMAS D G TALESSolución P9. a) (a b + a c) (a b) = a b (por la ley del consenso) Con esto tenemos una forma en suma de productos, donde el producto p = a b es el úni-co. También tenemos un producto de sumas, donde los términos suma son dos : s1 = a y s = b . 2 b) x y (v + w) [(x + y) v] = x y (v + w) (x + y) v = v x y (x + y) = v x y (ley de absorción) . Con esto tenemos una forma en suma de productos, donde el producto p = v x y es único .También tenemos un producto de sumas, donde los términos suma son tres : S 2 = v, s = x,s 3y. c) x + yz, es suma de dos productos, pl X, 2 = P = y z . Por otra parte, aplicando la propie-dad distributiva : x + yz = (x + y) (x + z) . Con ello tenemos una expresión en producto de sumas : 2s1 =x+y, s =x+z . d)f=(a+b+ c) (d + a) + b c + a c Para reducirlo a una forma en producto de sumas operaremos sobre la expresión de faplicando repetidas veces la propiedad distributiva : (a + b + c) (a + d) + b c + a c = (a + b + c) (a+d)+(a+b)c= =[(a+b+c)(a+d)+(a+b)] [(a+b+c)(a+d)+c]= =[(a±b+c+a+b)+(a+d+a+b)] [(a+b+c+c)(a+d+c)]= =(a+b+ c) (a+b+ d) (a+c+ d) . Obtenemos por tanto un producto de tres términos suma : s1 = a + b + c, s = a + b + d 2y s3=a+c+d. De forma similar se puede obtener una expresión en suma de productos : (a + b + c) (a + d) + b c + a c = [a + (b + c) d)] + a c + b c = a + a c + b c + (b + c) d= =a+bc+bd+c d . Son, por tanto, cuatro términos producto : pl P2 3 4 = a, = b c, p = b d, P = c d .Problema 10.- Determine y exprese en forma de mintérminos y maxtérminos las funcionesf, + f2 y f, - f2, siendo : f, = (1, 2, 3, 5, 6, 7, 13, 14, 15) ; f2 = E (0, 4, 8, 9, 10, 14, 15) Repetir para f, O f2 y la equivalencia : f, O f2. 1 2Solución P10.- Para expresar la función f + f como suma de mintérminos hay que tener en 1 2consideración que todos los mintérminos de f y todos los mintérminos de f son mintérminos 1 2de f + f ya que 1 + x = 1 . Entonces : l 2 1 2 f + f = E (0, 4, 8, 9, 10, 11, 12, 14, 15), y por exclusión : f + f = U (1, 2, 3, 5, 6, 7, 13) . 1 2 Para expresar la función f . f , es mejor comenzar por la expresión en forma de produc-to de maxtérminos ya que debido a que 0 • x = 0 podemos decir que todos los maxtérminos de1 2 1 2f y todos los de f son maxtérminos de f • f . Entonces : l 2 f • f =11(1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15) =E (0, 4, 8, 9, 10) . 1 2 1 2 En cuanto a la función f O f , para que sea 1 es preciso que f y f sean distintas . Por 1 2 1 2tanto, los mintérminos de f O f son los mintérminos de f que no lo son de f y los de f que 2no lo son de f : 1 f 1 f2 = E (11, 12, 14, 15) = f (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13) .

×