Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Das Semantische Daten Web für Unternehmen

2,934 views

Published on

Published in: Technology, Education
  • Be the first to comment

Das Semantische Daten Web für Unternehmen

  1. 1. Das SemantischeDaten Web für UnternehmenVision, Technologie, Anwendungen<br />Sören Auer<br />Forschungsgruppe AKSW<br />
  2. 2. Warum Semantic Web?<br />Problem: Try to search for these things on the current Web:<br />Apartments near German-Russian bilingual childcare in Leipzig.<br />ERP service providers with offices in Vienna and London.<br />Researchers working on multimedia topics in Eastern Europe.<br />Informationis available on the Web, but opaque to current Web search.<br />Solution: complement text on Web pages with structured linked open data & intelligently combine/integrate such structured information from different sources:<br />Search engine<br />HTML<br />HTML<br />RDF<br />RDF<br />Web server<br />Web server<br />Web server<br />Web server<br />leipzig.de<br />Has everything about childcare in Potsdam.<br />Immobilienscout.de<br />Knows all about real estate offers in Germany<br />DB<br />DB<br />
  3. 3. Vom Web derDokumentezumSemantic Data Web<br />Semantic Web(Vision 1998, starting ???)<br /><ul><li>Reasoning
  4. 4. Logic, Rules
  5. 5. Trust</li></ul>Data Web (since 2006)<br /><ul><li>URI de-referencability
  6. 6. Web Data integration
  7. 7. RDF serializations</li></ul>Social Web (since 2003)<br /><ul><li>Folksonomies/Tagging
  8. 8. Reputation, sharing
  9. 9. Groups, relationships</li></ul>Web (since 1992)<br /><ul><li>HTTP
  10. 10. HTML/CSS/JavaScript</li></li></ul><li>The Long Tail of Information Domains<br />Pictures<br />The Long Tail by Chris Anderson (Wired, Oct. ´04) adopted to information domains<br />Recipes<br />News<br />Video<br />Calendar<br />Popularity<br />SemWeb supported structured content<br />Requirements-Engineering<br />Talentmanagement<br />Special interest<br />communities<br />Itinerary ofKing George<br />Gene<br />sequences<br />…<br />…<br />…<br />…<br />Currently supportedstructuredcontent types<br />Not or insufficiently supported content types<br />
  11. 11. Die Vision: ein Web VernetzterDaten<br />interlink<br />2009<br />2007<br />SILK<br />DXX Engine<br />fuse<br />create <br />2008<br />poolparty<br />SemMF<br />OntoWiki<br />2008<br />Sigma<br />WiQA<br />2008<br />2008<br />ORE<br />repair<br />classify<br />Virtouso<br />2009<br />DL-Learner<br />MonetDB<br />Sindice<br />enrich<br />
  12. 12. Semantic Web - Standards<br />Standardization Semantic Web<br />1994<br /><ul><li>First public presentation of the Semantic Web idea</li></ul>Semantic Web Architecture<br /><ul><li>Start of standardization of data model (RDF) and a first ontology languages (RDFS) at W3C</li></ul>1998<br /><ul><li>Start of large research projects about ontologies in the US and Europe (DAML & Ontoknowledge)</li></ul>2000<br />Current research<br /><ul><li>Start of standardization of a new ontology language (OWL) based on research results</li></ul>2002<br /><ul><li>Finalization of the standard for data (RDF) and ontology (OWL)</li></ul>2004<br /><ul><li>Standardization of a quer y language(SPARQL, 6. April 2006)
  13. 13. Ongoing work on rule languages(SWRL, DL-safe rules, RIF)
  14. 14. Extension of OWL to OWL 1.1 / 2.0
  15. 15. Ontology language of OMG based on UML (ODM)</li></ul>2006<br />Now standardized<br /><ul><li>RDFa</li></ul>2008<br /><ul><li>OWL2</li></ul>2009<br />6<br />
  16. 16. Data Zugriff und Integration auf semantischerEbene<br />Enterprise Information Integration<br />sets of heterogeneous data sources appear as a single, homogeneous data source<br />Research<br />Mediators<br />Ontology-based<br />P2P<br />Web service-based<br />Data Web<br /><ul><li>URIs as entity identifiers
  17. 17. HTTP as data access protocol
  18. 18. Local-As-View (LAV)</li></ul>Data Warehousing<br /><ul><li>Based on extract, transform load (ETL)
  19. 19. Global-As-View (GAV)</li></ul>Data Integration<br />Object-relational mappings (ORM)<br /><ul><li>NeXT’s EOF / WebObjects
  20. 20. ADO.NET Entity Framework
  21. 21. Hibernate</li></ul>Query Languages<br /><ul><li>Datalog, SQL
  22. 22. SPARQL
  23. 23. XPATH/XQuery</li></ul>Linked Data<br /><ul><li>de-referencable URIs
  24. 24. RDF serialization formats</li></ul>Procedural APIs<br /><ul><li>ODBC
  25. 25. JDBC</li></ul>Data Access<br />Triple/Quad Stores<br /><ul><li>RDF data model
  26. 26. Virtuoso, Oracle, Sesame</li></ul>RDBMS<br /><ul><li>Organize data in relations, rows, cells
  27. 27. Oracle, DB2, MS-SQL</li></ul>Others<br /><ul><li>XML, hierachical, tree, graph-oriented DBMS</li></ul>Column-oriented DBMS<br /><ul><li>Collocates column values rather than row values
  28. 28. Vertica, C-Store, MonetDB</li></ul>Data Models<br />Entity-attribute-value (EAV)<br /><ul><li>HELP medical record system, TrialDB</li></li></ul><li>Linked Data Web Technologie<br />1. Nutzt RDF alsDatenmodel<br />6.5.2010<br />takesPlaceAt<br />organizes<br />AKSW<br />LSWT2010<br />Leipzig<br />takesPlaceIn<br />2. Istserialisiert in Triple:<br />AKSW organizes LSWT2010<br />LSWT2010 takesPlaceAt “20100506”^^xsd:date<br />LSWT2010 takesPlaceAt Leipzig<br />3. Nutzt Content-negotiation<br />
  29. 29. RDF Vokabulare:Klassen & Eigenschaften Hierarchien<br />Beer rdf:typerdfs:Class<br />BottomFermentedBeerrdfs:subClassOf Beer<br />Bock rdfs:subClassOfBottomFermentedBeer<br />Lager rdfs:subClassOfBottomFermentedBeer<br />Pilsner rdfs:subClassOfBottomFermentedBeer<br />hasContentrdf:typerdfs:Property<br />hasAlcoholicContentrdfs:subPropertyOfhasContent<br />hasOriginalWortContentrdfs:subPropertyOfhasContent<br />9<br />
  30. 30. RDF-S Instanzen<br />Instanzen sind einer oder mehreren Klassen zugeordnet:<br />Boddingtons rdf:type Ale<br />Grafentrunkrdf:type Bock<br />Hoegaardenrdf:type White<br />Jeverrdf:type Pilsner <br />10<br />
  31. 31. Vokabulare: Friend-of-a-Friend (FOAF)<br />definesclassesandpropertiesforrepresentinginformationaboutpeopleandtheirrelationships<br />Soeren rdf:typefoaf:Person<br />Soeren currentProject http://OntoWiki.net<br />Soeren foaf:homepage http://aksw.org/Soeren<br />Soeren foaf:knows http://sembase.at/Tassilo<br />Soeren foaf:sha1 09ac456515dee<br />11<br />
  32. 32. Integration von RDF und HTML: RDFa<br />12<br /><div typeof="foaf:Person" xmlns:foaf="http://xmlns.com/foaf/0.1/"><br /> <p property="foaf:name"> Alice Birpemswick </p><br /> <p> Email: <a rel="foaf:mbox"href="mailto:alice@exa.com">alice@exa.com</a> </p><br /> <p> Phone: <a rel="foaf:phone"href="tel:+1-617-555-7332">+1 617.555.7332</a> </p><br /></div><br />
  33. 33. Anwendungs- und EinsatzpotentialeimUnternehmen<br />Integration heterogenerInformationsbeständemittelsOntologien und Hintergrundwissen (z.B. DBpedia)<br />Semantische Wikis (z.B. OntoWiki) helfenstrukturierteWissensbasenzuerstellen und managen<br />
  34. 34. Transformation von Wikipedia in eineWissensbasis<br />community effort to extract structured information from Wikipedia and to make this information available on the Web<br />allows to ask sophisticated queries against Wikipedia (e.g. universities in brandenburg, mayors of elevated towns, soccer players), and to link other data sets on the Web to Wikipedia data<br />Represents a community consensus<br />Recently launched DBpedia Live transforms Wikipedia into a structred knowledge base<br />S. Auer; C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak, Z. Ives: DBpedia: A Nucleusfor a Web of Open Data. 6th International Semantic Web Conference ISWC 2007.<br />S. Auer, J. Lehmann: Whathave Innsbruck and Leipzig in common? ExtractingSemanticsfrom Wiki Content. 4th European Semantic Web Conference, ESWC 2007.<br />
  35. 35. Structure in Wikipedia<br />Title<br />Abstract<br />Infoboxes<br />Geo-coordinates<br />Categories<br />Images<br />Links<br />other language versions<br />other Wikipedia pages<br />To the Web<br />Redirects<br />Disambiguations<br />
  36. 36. Infobox templates<br />Wikitext-Syntax<br />{{Infobox Korean settlement<br />| title = Busan Metropolitan City<br />| img = Busan.jpg<br />| imgcaption = A view of the [[Geumjeong]] district in Busan<br />| hangul = 부산 광역시<br />...<br />| area_km2 = 763.46<br />| pop = 3635389<br />| popyear = 2006<br />| mayor = Hur Nam-sik<br />| divs = 15 wards (Gu), 1 county (Gun)<br />| region = [[Yeongnam]]<br />| dialect = [[Gyeongsang]]<br />}}<br />http://dbpedia.org/resource/Busan<br />dbp:Busan dbpp:title ″Busan Metropolitan City″<br />dbp:Busan dbpp:hangul ″부산 광역시″@Hang<br />dbp:Busan dbpp:area_km2 ″763.46“^xsd:float<br />dbp:Busan dbpp:pop ″3635389“^xsd:int<br />dbp:Busan dbpp:region dbp:Yeongnam<br />dbp:Busan dbpp:dialect dbp:Gyeongsang<br />...<br />RDF representation<br />
  37. 37. Einegroße multi-linguale, multi-domänenWissensbasis<br />DBpediaExtraktionresultiertin:<br />Beschreibungen von ca. 3.4 MillionenDingen(1.5 million classified in a consistent ontology, including 312,000 persons, 413,000 places, 94,000 music albums, 49,000 films, 15,000 video games, 140,000 organizations, 146,000 species, 4,600 diseases<br />Labels und Zusammenfassungen in 92 verschiedenenSprachen; 1,460,000 links to images and 5,543,000 links to external web pages; 4,887,000 external links into other RDF datasets, 565,000 Wikipedia categories, and 75,000 YAGO categories<br />Zusammenmehrals1 MilliardeFakten(d.h. RDF triple): 257M from English edition, 766M from other language editions<br />DBpediahinterläßt sichtbareSpurenin Wissenschaft, Technologieand Gesellschaft<br />DBpedia became the central interlinking hub on the Data Web<br />Scientific publications attracted more than 500 citations<br />More than 15.000 monthly visits on DBpedia.org,numerous press articles, blog posts …<br />Ecosystem of commercial and community applications:ThomsonReuters, BBC, Neofonie, Openlink, Faviki…<br />
  38. 38. Das Semantische Daten Wiki<br />Agiles, verteiltes Knowledge Engineering<br />KeinWiki mitsemantischerErweiterung(Semantic MediaWiki, IkeWiki), sondern Ontology Editor der Wiki Konzeptenutzt:<br />Make it easy tocorrect mistakes(ant intelligence)<br />Activity can bewatched andreviewed<br />Everything canbe undone<br />AKSW Vorstellung<br />
  39. 39. OntoWiki: CatalogusProfessorum<br />
  40. 40.
  41. 41.
  42. 42. SoftWiki<br />Problem: Requirements Engineering mitgroßen, geografischverteilten Stakeholder-Gruppen<br />Lösung:umfassendeOntologie für RE Wissen+ adaptierteOntoWikiAnwendung<br />Anwendung von Textmining<br />Algorithmen für DuplicateDetection<br />
  43. 43. OntoWiki: Vakantieland<br />
  44. 44. Take Home Messages<br />Semantic Web<br />Unterstützt die Integration von Datenim Web (einheitliches Triple-Datenmodel)<br />Standardisierte (W3C) Linked Data Technologiebasis<br />Ontologien und Hintergrundwissen (z.B. DBpedia) hilftbeider Integration heterogenerInformationsbestände<br />Semantische Wikis helfen RDF Wissensbasenzuerstellen und managen<br />
  45. 45. Vielen Dank!<br />Sören Auer<br />auer@informatik.uni-leipzig.de<br />Agile Knowledge Engineering & Semantic Web (AKSW)http://aksw.org<br />BerufsbegleitenderMasterstudiengang“Content- & Media Engineering”<br />M1: Medienproduktion (GMP)<br />M2: Web-Technologien (WT)<br />M3: Content- und Wissensmanagement-Systeme (CWM)<br />M4: Crossmediale Produktion (CP)<br />M5: Medienwirtschaft und Medienmanagement (MW)<br />M6: Projektarbeit (PA)<br />M7: E-Business (EB)<br />http://www.leipzigschoolofmedia.de/<br />Mediencampus “Villa Ida”<br />

×