Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

World Innovation Forum 2010 - Andreas Weigend - Social Data Revolution

12,537 views

Published on

World Innovation Forum 2010 at New York City, Presentation by ex-Chief Scientist, Andreas Weigend on Social Data Revolution

Published in: Technology, Business

World Innovation Forum 2010 - Andreas Weigend - Social Data Revolution

  1. Andreas Weigend<br />@aweigend<br />www.weigend.com<br />
  2. Who creates data? <br />Production: Data is digital air<br />How will this data be shared?<br />Distribution: Everyone is a publisher<br />What will this data be used for? <br />Consumption: Behavior changes<br />
  3. A Shift in Language<br />Share<br />Distribute<br />Interpret<br />Empower<br />Collect<br />Solicit<br />Mine<br />Segment<br />
  4. Technologies Enabling Innovation<br />1800’s: Transport energy <br />Industrial Revolution<br />1900’s: Transport data <br />Information Revolution<br />2000’s: Create data <br />Social Data Revolution<br />
  5. In the last sixty seconds…<br />
  6. us.hsmglobal.com/contenidos/… bit.ly/WIF2010<br />
  7. Waves of Innovation<br />1990’s: Search  find<br />2000’s: Social  share<br />2010’s: Mobile  create<br /> Social Data Revolution<br />
  8. Social Data Revolution<br />How the<br />Changes (Almost) Everything<br />
  9. Agenda<br />
  10. ConnectingComputers<br />
  11. ConnectingPages<br />
  12. ConnectingPeople<br />
  13. Underlying?<br />
  14. Data<br />The amount of data each person creates doubles every 1.5 … 2 years<br />2x<br />time?<br />
  15. Data<br />The amount of data each person creates doubles every 1.5 … 2 years<br />□ after five years  x 10<br />□ after ten years  x 100<br />□ after twenty years  x 10000<br />
  16. Since then…<br />+ Computation<br />+ Communication<br />+ Sensing<br />
  17. 1 billion connected sensors<br />
  18. 40 billion RFID tags<br />
  19. Pay-as-you-drive car insurance (GPS)<br />
  20. Monitors your excercise and sleep<br />
  21. 99% DNAoverlap<br />
  22. Time Scales<br />Data, Technology: ~1year<br />Social Norms: ~10 years<br />Biology: ~100k yrs<br />
  23. Agenda<br />
  24. C2B<br />Part I:<br />
  25. +1 800-4-SCHWAB<br />
  26. Imagine...<br /><ul><li> You knew all the things people here have bought
  27. You knew all of their friends
  28. You knew their secret desires</li></ul>... what would you do?<br />
  29. Amazon.com helps people<br />make decisions…<br />…based on reviews<br />
  30. Customers whoboughtthis item alsobought…<br />
  31. Customers whoviewedthis item alsoviewed…<br />
  32. Customers whoviewedthis item ultimately bought…<br />
  33. Social proof:<br />Put your money where your mouth is<br />
  34. How do you know peoples’<br />secret desires?<br />World Innovation Forum<br />
  35. Data Sources<br /><ul><li>Attention</li></ul>Clicks, Transactions<br /><ul><li>Intention</li></ul> Search<br /><ul><li>Connection</li></ul>Social graph<br /><ul><li>Situation</li></ul>Geo-location<br />Device<br />
  36. New phone product: How to market?<br /><ul><li>Connection data</li></ul>Who called whom?<br /><ul><li>Traditional segmentation</li></ul>Demographics<br />Loyalty<br />
  37. 1.35%<br />Adoptionrate<br />4.8x<br />0.28%<br />Connection data<br /> Traditionalsegmentation<br />
  38. Business<br />Customers<br />
  39. C2C = Customer-to-Customer<br />Customers share with each other<br />
  40. C2C<br />Part II:<br />
  41. Amazon.com Share the Love<br />
  42. Result:Amazingconversion rates since customer chooses<br />Content (the item)<br /> Context (she just bought that item)<br /> Connection(she asked Amazon to email her friend)<br /> Conversation(information as excuse for communication)<br />
  43. Purpose of communication:to transmit information?<br />Or is information justan excuse for communication?<br />
  44. What do my friends think of this product?<br />
  45. Social graph targeting<br />Provide list of prospects<br />
  46. Fraud reduction<br />Provide risk scores<br />
  47. Social network intelligence<br />
  48. C2W<br />Part III:<br />
  49. Amazon.com: Public sharing of interests<br />
  50. Add on-line features to off-line products…<br />
  51. Consumers- Engage- Share- Connect<br />3 times per week<br />
  52. “We are not in the business of keeping the media companies alive.”<br />Trevor EdwardsNike Corporate Vice President forBrand and Category Management<br />“We are in the business of connecting with consumers.”<br />Q: Or rather in the business of facilitating consumers to connect with each other?<br />
  53. <ul><li> Search tweets
  54. Create tweets
  55. Follow users</li></li></ul><li>The Illusion of an Audience<br />
  56. Insights<br />Part IV:<br />
  57. Customer<br />Product<br />Brand<br />
  58. From controlled production for the masses… <br />… to uncontrolled production by the masses<br />
  59. Consumers<br />discussing<br />ideas<br />
  60. Consumers helping<br />consumers<br />
  61. Corner / Oversized Rooms:<br />Rooms Ending in:<br />04<br />Oversized, Corner Room, Quiet Room<br />24<br />Oversized, Corner Room with North Times Square Views (Higher Floors are Preferred<br />Rooms to Avoid:<br />Rooms Ending in:<br />01, 21<br />Possible Ice Machine / Elevator Noise<br />08, 17<br />Limited View Rooms<br />
  62. Group buying… “get a better deal”<br />
  63. E  Me  We-business<br /> From e-business… (company focus, Web 1.0)<br /> …to me-business (customer focus , Web 2.0)<br /> …to we-business (community focus , Web 3.0)<br />
  64. Innovation<br /> Dead data  Live data<br />Collect and analyze  Create, share, experiment<br /> Internal  External<br />“Most smart people don’t work here.” Bill Joy<br />
  65. Questions<br />Part V:<br />
  66. Audience Question 1<br /> Do you have any advice on how we can be authentic in the era of Social Data?<br /> For companies with limited resources, what are the costs of some of the suggestions you mentioned in the talk?<br />
  67. Audience Question 2<br /> What is the most important ingredient for a successful innovation strategy?<br /> Do you have any specific suggestion for traditional companies: how can we learn more about the culture change of the Social Data Revolution?<br />
  68. Thank you!<br />@aweigend<br />Andreas Weigend | www.weigend.com<br />

×